
Interpreters and Metainterpreters

1 Summary

This handout introduces the concept of a Prolog metainterpreter ; that is, an interpreter written in Prolog. First, some
necessary background is provided on interpreters and general, followed by a discussion of Prolog metainterpreters.

2 Background: Program Interpreters

An interpreter is a program that takes in another program as input, and executes the given program. This is a general
concept which is widely applicable. While this might sound abstract, you’ve both seen and written multiple interpreters at
this point. Specifically, the code for evaluating arithmetic and boolean expressions would qualify as a type of interpreter,
and the arithmetic/boolean expressions they take as input would qualify as (albeit simplistic) programs.

Sidenote: Compilers work differently than interpreters, though both tend to get used in
the same capacity. Like interpreters, compilers are programs that take programs as input.
However, the output of a compiler is another program, usually written in a different language
than the input program. For example, C compilers generally produce assembly code as output,
given C code as input. This is very different from the output of an interpreter, as the output
of an interpreter is the output of the input program itself. Viewed another way, interpreters
execute input programs, whereas compilers translate input programs into other programs.

We can build more advanced interpreters which evaluate more rich languages using the same sort of concepts you’ve
already seen with arithmetic and boolean evaluators. For example, consider the following program grammar:

i ∈ Z
b ∈ Boolean ::= true | false

e ∈ Expression ::= i | b | e1 < e2 | e1 && e2 | if (e1) {e2} else {e3} | print(e)

While the above language is still relatively simplistic, this is arguably much more expressive than before. Notably,
the above language combines both arithmetic and boolean operations, adds in an if expression, and even allows for the
program to output values with print. We can now ask questions like “is 5 less than 6?” (5 < 6), and perform different
operations depending on the result. Overall, the above language can be described by the following informal semantics:

• Integers (i) evaluate to themselves

• Booleans (b) evaluate to themselves

• e1 < e2 evaluates to true if e1 evaluates to an integer which is less than the integer produced by evaluating e2 (e.g.,
5 < 6). If the integer that e1 evaluates to is ≥ the integer e2 evaluates to, then e1 < e2 evaluates to false. If either
e1 or e2 does not evaluate to an integer (e.g., 5 < true), then evaluation stops and the program crashes.

• e1 && e2 evaluates to true if both e1 and e2 evaluate to the boolean true (e.g., true && (1 < 2)). If both e1 and e2
evaluate to any different combination of booleans, then e1 && e2 evaluates to false (e.g., (3 < 3) && (1 < 2)). If
either e1 or e2 does not evaluate to a boolean (e.g., 5 && true), then evaluation stops and the program crashes.

• if (e1) {e2} else {e3} evaluates down to whatever e2 evaluates down to if e1 evaluates down to the boolean true. If
e1 evaluates down to the boolean false, then if (e1) {e2} else {e3} evaluates down to whatever e3 evaluates down to.
If e1 evaluates down to something that isn’t a boolean, then evaluation stops and the program crashes.

• print(e) will print out whatever e evaluates down to. print(e) itself will evaluate down to the special value void.
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We can implement an interpreter in Prolog for the above language. However, before we implement the interpreter,
let’s redefine the grammar to be a little more amenable to definition in Prolog. Specifically, we’ll redefine everything to
work in terms of structures and atoms. Such a redefinition is below:

i ∈ Z
b ∈ Boolean ::= true | false

e ∈ Expression ::= integer(i) | boolean(b) | lessThan(e1, e2) | and(e1, e2) | if(e1, e2, e3) | print(e)

Now that everything in this grammar is defined in terms of atoms and structures, this AST can be more easily represented
in Prolog.

Sidenote: Note that this change to the above grammar is relatively inconsequential. Most
importantly, the semantics of the language will not change. Additionally, such a conversion is
usually the job of a parser, which reads an input file (viewable as a single giant String value)
and converts it into an abstract syntax tree (AST). The specific AST representation depends
on whatever language the interpreter is being written in; in this case, since we’re using Prolog,
we’re using a grammar/AST definition which is amenable to Prolog. We could implement a
parser in Prolog as well, though this is tangential to the problem at hand.

We incrementally define our Prolog-based interpreter below. First, we define two Prolog facts corresponding to how
integers and booleans should be evaluated:

1 eva l ( i n t e g e r (N) , i n t (N) ) .
2 eva l ( boolean (B) , bool (B) ) .

These rules state that integers (line 1) and booleans (line 2) evaluate to themselves, respectively. In this case, we use
structures named int and bool to represent the evaluated values. This distinguishes integer ASTs from integer values, and
so on. Such a distinction isn’t absolutely necessary, but it can help with debugging (without this, it can be difficult to
distinguish between ASTs and values, which are distinct things).

The next thing implemented is a rule handling lessThan, shown below:

1 eva l ( lessThan (E1 , E2 ) , bool ( Result ) ) :−
2 eva l (E1 , i n t ( E1Result ) ) ,
3 eva l (E2 , i n t ( E2Result ) ) ,
4 ( E1Result < E2Result −>
5 Result = true ;
6 Result = f a l s e ) .

A line-by-line description of this rule follows:

1. lessThan(E1, E2) evaluates to a boolean

2. E1 evaluates to an integer

3. E2 evaluates to an integer

4. If the first integer is less than the second integer. . .

5. . . . if so, then the result is true

6. . . . if not, then the result is false

For the next rule (and), we’ll first introduce a helper with the same name, shown below:

1 and ( f a l s e , , f a l s e ) .
2 and ( , f a l s e , f a l s e ) .
3 and ( true , true , t rue ) .

This is the same code implementing boolean AND from the boolean evaluator; this ultimately states that only true AND
true yield true, whereas everything else yields false.
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With the above and helper in hand, we’ll implement the rule handling and AST nodes, shown below:

1 eva l ( and (E1 , E2 ) , bool ( Result ) ) :−
2 eva l (E1 , bool ( E1Result ) ) ,
3 eva l (E2 , bool ( E2Result ) ) ,
4 and ( E1Result , E2Result , Result ) .

A line-by-line explanation of the above code follows:

1. and(E1, E2) evaluates to a boolean value

2. E1 must evaluate down to a boolean value

3. E2 must evaluate down to a boolean value

4. The final result is determined by performing boolean AND on E1Result (derived by evaluating E1) and E2Result

(derived by evaluating E2)

From here, we’ll implement the rule for if, shown below:

1 eva l ( i f (E1 , E2 , E3 ) , Result ) :−
2 eva l (E1 , bool (B) ) ,
3 (B == true −>
4 eva l (E2 , Result ) ;
5 eva l (E3 , Result ) ) .

A line-by-line description follows:

1. if(E1, E2, E3) evaluates down to some result

2. E1 evaluates down to a boolean B

3. If B. . .

4. . . . is true, then the final result is whatever E2 evaluates down to

5. . . . is false (well, technically any value except true, but booleans can only be true or false), then the final result
is whatever E3 evaluates down to

We finally handle the case for print, shown below:

1 eva l ( p r i n t (E) , void ) :−
2 eva l (E, ToPrint ) ,
3 writeln ( ToPrint ) .

A line-by-line description follows:

1. print(E) evaluates to the special value void

2. Evaluate E down to some arbitrary result ToPrint

3. Write out ToPrint, followed by a newline
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The interpreter code in its entirety is shown below:

1 and ( f a l s e , , f a l s e ) .
2 and ( , f a l s e , f a l s e ) .
3 and ( true , true , t rue ) .
4
5 eva l ( i n t e g e r (N) , i n t (N) ) .
6 eva l ( boolean (B) , bool (B) ) .
7 eva l ( lessThan (E1 , E2 ) , bool ( Result ) ) :−
8 eva l (E1 , i n t ( E1Result ) ) ,
9 eva l (E2 , i n t ( E2Result ) ) ,

10 ( E1Result < E2Result −>
11 Result = true ;
12 Result = f a l s e ) .
13 eva l ( and (E1 , E2 ) , bool ( Result ) ) :−
14 eva l (E1 , bool ( E1Result ) ) ,
15 eva l (E2 , bool ( E2Result ) ) ,
16 and ( E1Result , E2Result , Result ) .
17 eva l ( i f (E1 , E2 , E3 ) , Result ) :−
18 eva l (E1 , bool (B) ) ,
19 (B == true −>
20 eva l (E2 , Result ) ;
21 eva l (E3 , Result ) ) .
22 eva l ( p r i n t (E) , void ) :−
23 eva l (E, ToPrint ) ,
24 writeln ( ToPrint ) .

We can issue queries to the above code, which amounts to giving this interpreter programs to interpret. For example,
consider the following program, written in the style of the first (non-Prolog-friendly) grammar:

if ((5 < 6) && true) {

print(1)

} else {

print(2)

}

The above AST is equivalently represented in the Prolog-friendly grammar as such:

if(

and(lessThan(integer(5), integer(6)),

boolean(true)),

print(integer(1)),

print(integer(2)))

We can interpret the above AST as a program, as shown below:

1 ?− eva l (
2 i f (
3 and ( lessThan ( i n t e g e r ( 5 ) , i n t e g e r ( 6 ) ) ,
4 boolean ( t rue ) ) ,
5 p r i n t ( i n t e g e r ( 1 ) ) ,
6 p r i n t ( i n t e g e r ( 2 ) ) ) ,
7 Result ) .
8 i n t (1 )
9 Result = void .

Line 8 above shows that this program output int(1), indicating that the first print (specifically the one on line 5)
was executed. This is expected considering that (5 < 6) && true evaluates to true, ultimately causing print(1) to be
executed. Line 6 shows that the AST evaluates down to void, the special value that print expressions always evaluate to.
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3 A Basic Prolog Metainterpreter

We can take this same sort of approach to defining an interpreter for Prolog. However, instead of doing everything from
scratch (as previously done), we’ll instead take a major shortcut and define the Prolog interpreter in Prolog. This will
allow us to piggyback off of Prolog’s features as needed, dramatically cutting down on the amount of code we need to
write.

First, let’s start with a grammar describing a subset of Prolog we are interested, which itself will be written in a
Prolog-friendly form:

t ∈ Term
c ∈ Clause ::= true | t1 is t2 | t1 = t2 | c1, c2 | c1; c2 | \+ c | t

We leave the definition of terms (effectively Prolog data: variables, atoms, and structures) abstract, as we will piggyback
off of Prolog for the full definition. From here, we define a number of clauses that we are interested in handling, namely:

• true, which is a clause that trivially succeeds without doing any real work.

• t1 is t2, representing is with its usual meaning of arithmetic evaluation. Note that this is equivalently written as a
structure: is(t1, t2).

• t1 = t2, with its usual meaning of unification. This is equivalently written as the structure = (t1, t2).

• c1, c2, with its usual meaning of conjunction. This is equivalently written as the structure ,(c1, c2).

• c1; c2, with its usual meaning of disjunction (that is, splitting the world). This is equivalently written as the structure
;(c1, c2).

• \+ c, with its usual meaning of negation-as-failure. This is equivalently written as the structure \+(c).

• Terms on their own, t, which represent calls. For example, append(L1, L2, L3) is a call if used in the context
of a clause. In fact, it is this context which defines whether or not a given Prolog term is code or data; every-
thing shown can be either code or data, depending on how it is used (append can just as easily be data, as in
X = append(L1, L2, L3)).

We incrementally define a fully-functioning interpreter for the above language, using Prolog itself. First, the case for
true:

i n t e r p r e t ( t rue ) :− ! .

As shown, true merely succeeds, but with a slight twist: there is a cut (!). Every rule we implement is going to begin
with this cut, which serves to prevent the interpreter itself from backtracking over different productions. At the moment,
the need for this cut may not seem apparent; if you do not understand its purpose, don’t worry quite yet.

For the next rule, we will handle is, shown below:

1 i n t e r p r e t ( (A i s B) ) :−
2 ! ,
3 A i s B.

On line 1, we show that this rule applies if the input is an is. The extra parentheses are needed to help Prolog correctly
parse this. This first line could equivalently be written as a usual structure, like so: interpret(is(A, B)). The second
line performs the same sort of cut as before, with the same purpose. The third line defers how is is handled to the built-in
is operation. This third line is where we first exploit the fact that this is a metainterpreter: because is is already available,
we can just use the built-in definition of is without defining our own. If we needed to define our own, we’d have to define
exactly how things like addition and multiplication work, which would take quite a bit of code.

Unification is defined quite similarly to is, shown below:

1 i n t e r p r e t ( (A = B) ) :−
2 ! ,
3 A = B.

As before, we defer to Prolog’s built-in definition of unification for this task. This saves arguably even more code than we
saved with is, as full unification takes a fair amount of work to implement.
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Next we will implement conjunction, shown below:

1 i n t e r p r e t ( (A, B) ) :−
2 ! ,
3 i n t e r p r e t (A) ,
4 i n t e r p r e t (B) .

This also makes great use of Prolog’s built-in definition of conjunction. As written, this code recursively calls interpret
to interpret clause A (line 3), and then uses built-in conjunction (,) to interpret clause B with another recursive call to
interpret (line 4). The most English-like translation of the above code is the statement “To interpret A, B, we need
to interpret A, and then interpret B.”. Because we are defining this interpreter directly in Prolog, we quite conveniently
have access to something implementing the “and then” part above (namely conjunction: ,).

Disjunction and negation-as-failure are implemented in the exact same way as with conjucntion, except they defer the
appropriate built-in Prolog operations. These are both shown below:

1 i n t e r p r e t ( (A; B) ) :−
2 ! ,
3 ( i n t e r p r e t (A) ; i n t e r p r e t (B) ) .
4 i n t e r p r e t (\+(A) ) :−
5 ! ,
6 \+ i n t e r p r e t (A) .

The meaning of the above code should be clear, as this follows an identical pattern to conjunction (,).
The most complex case to handle is that of calls. For calls, we will make use of a special built-in routine: clause/2

(http://www.swi-prolog.org/pldoc/man?predicate=clause/2). The clause/2 procedure takes a term representing a
call, and will nondeterministically perform the first step of a call, putting what’s left to execute in the second . This is
best explained via an example. Consider the following rulebase:

1 foo ( 1 ) .
2 foo (2 ) :−
3 8 i s 4 + 4 .
4 foo (X) :−
5 27 = 27 ,
6 NewX i s X − 1 ,
7 foo (NewX) .
8
9 bar ( 1 7 ) .

With the above rulebase in hand, let’s perform some queries involving clause/2. First, a query involving foo(1):

1 ?− clause ( foo ( 1 ) , Body ) .
2 Body = true ;
3 Body = (27=27 , G2359 i s 1+ −1, foo ( G2359 ) ) .

As shown, there were two answers produced from this query, described in order:

1. The call foo(1) unifies with the fact foo(1) in the rulebase. The Body, that is, what is remaining to be executed,
is simply true, which always just evaluates to true without doing any special execution. This use of true here,
incidentally, is why we implement true in our metainterpreter in the first place.

2. The call foo(1) also unifies with foo(X), leading to a second answer. In this case, the body is much more complex:
we have a conjunction of things left to execute. The variable X has been filled in with 1 in this body, as we know
from the call foo(1) that X must be 1. The variable NewX is present in this body, though the name has been mangled
to be something else (namely G2359). However, NewX still holds the same meaning; this can be determined by the
fact that G2359 is used twice, meaning these are both the same variable. While NewX ( G2359) will eventually get
a value, this will only occur once NewX is X - 1 ( G2359 is 1+ -1) is executed, and this clause hasn’t yet been
executed.

Missing from the possible answers is code pertaining to foo(2) and bar(17). This is because neither of these terms unify
with the term foo(1). Thinking in terms of how calls work, foo(2) is a procedure that doesn’t have a compatible head
as our call foo(1), and bar is an entirely separate procedure.
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With clause/2 in hand, the implementation of calls becomes relatively short:

1 i n t e r p r e t ( Ca l l ) :−
2 clause ( Cal l , Body ) ,
3 i n t e r p r e t (Body ) .

As shown on line 1, a call can be any term, so we simply use the variable Call here. This is why the cut (!) was needed in
the other rules: without the cut, Prolog could backtrack with something that definitely isn’t a call (e.g., conjunction) and
try to treat it as a call. This would lead to our metainterpreter crashing, as clause only works with things that are calls.
At line 2 above, clause/2 is used to make the first step of a call. This will nondeterministically select between all the
clauses that could be called here, binding the remainder of what needs to be executed to the variable Body. Conveniently,
clause/2’s nondeterministic solutions are always in order of clauses present in the file, so the above code will end up
exploring solutions in the exact same order as Prolog will. Line 3 will interpret what’s left to execute (stored in Body)
using a recursive call to interpret.

The complete metainterpreter is shown below, along with a definition of myLength which will recursively compute the
length of an input list. This definition will be used with some example queries in a moment.

1 i n t e r p r e t ( t rue ) :− ! .
2 i n t e r p r e t ( (A i s B) ) :−
3 ! ,
4 A i s B.
5 i n t e r p r e t ( (A = B) ) :−
6 ! ,
7 A = B.
8 i n t e r p r e t ( (A, B) ) :−
9 ! ,

10 i n t e r p r e t (A) ,
11 i n t e r p r e t (B) .
12 i n t e r p r e t ( (A; B) ) :−
13 ! ,
14 ( i n t e r p r e t (A) ; i n t e r p r e t (B) ) .
15 i n t e r p r e t (\+(A) ) :−
16 ! ,
17 \+ i n t e r p r e t (A) .
18 i n t e r p r e t ( Ca l l ) :−
19 clause ( Cal l , Body ) ,
20 i n t e r p r e t (Body ) .
21
22 myLength ( [ ] , 0 ) .
23 myLength ( [ |T] , Len ) :−
24 myLength (T, TLen ) ,
25 Len i s TLen + 1 .

Example queries follow. First, a basic check that unification is working:

?− i n t e r p r e t ( (A = 5 ) ) .
A = 5 .

As shown, we call the interpret procedure with the data A = 5, which is equivalent to calling interpret with the
structure =(A, 5). Unification is performed between A and 5, leading to the expected solution that A = 5.

This sort of unification can be chained along with conjunction, like so:

?− i n t e r p r e t ( (A = 5 , B i s 4 + A) ) .
A = 5 ,
B = 9 .

As shown, both A = 5 and B is 4 + A are executed, leading to the solution that A = 5 and B = 9.
This works for calls as well, as shown below:

?− i n t e r p r e t ( myLength ( [ foo , bar , baz ] , Len ) ) .
Len = 3 .
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That is, the above code calls myLength with parameters [foo, bar, baz] and Len, leading to the expected answer that
Len = 3 (the length of the input list).

4 Exploiting Metainterpreters: Bounding

As shown in the previous section, Prolog makes it relatively easy to define a fully-functional metainterpreter. Such a
definition for a basic interpreter is mostly an academic exercise, but we can exploit this ease to effectively redefine the
basics of how Prolog works. For example, let’s consider again the problem of defining a test case generator, as shown
below:

1 exp ( i n t e g e r ( 0 ) ) .
2 exp ( p lus (E1 , E2 ) ) :−
3 exp (E1 ) ,
4 exp (E2 ) .

As written, the above procedure will keep “spamming” on the rightmost AST node, leading us to very skewed ASTS:

1 ?− exp (E) .
2 E = i n t e g e r (0 ) ;
3 E = plus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ;
4 E = plus ( i n t e g e r ( 0 ) , p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ) ;
5 E = plus ( i n t e g e r ( 0 ) , p lus ( i n t e g e r ( 0 ) , p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ) ) exp ( i n t e g e r ( 0 ) ) ;
6 . . .

We have been fixing this problem up until now by adding a decBound procedure into the mix, and decreasing some
arbitrary bound each time a recursive call is made. However, instead of doing such bounding in the exp procedure itself,
we can instead redefine Prolog to do this bounding automatically for us. This is done with a custom metainterpreter that
will call decBound when the interpreter itself makes a recursive call. Such an interpreter is shown below:

1 decBound ( In , Out) :−
2 In > 0 ,
3 Out i s In − 1 .
4
5 i n t e r p r e t ( , t rue ) :− ! .
6 i n t e r p r e t ( , (A i s B) ) :−
7 ! ,
8 A i s B.
9 i n t e r p r e t ( , (A = B) ) :−

10 ! ,
11 A = B.
12 i n t e r p r e t (Bound , (A, B) ) :−
13 ! ,
14 decBound (Bound , NewBound) ,
15 i n t e r p r e t (NewBound , A) ,
16 i n t e r p r e t (NewBound , B) .
17 i n t e r p r e t (Bound , (A; B) ) :−
18 ! ,
19 decBound (Bound , NewBound) ,
20 ( i n t e r p r e t (NewBound , A) ; i n t e r p r e t (NewBound , B) ) .
21 i n t e r p r e t (Bound , \+(A) ) :−
22 ! ,
23 decBound (Bound , NewBound) ,
24 \+ i n t e r p r e t (NewBound , A) .
25 i n t e r p r e t (Bound , Ca l l ) :−
26 decBound (Bound , NewBound) ,
27 clause ( Cal l , Body ) ,
28 i n t e r p r e t (NewBound , Body ) .
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With this custom metainterpreter in hand, we can now bound automatically without redefining exp, like so:

1 ?− i n t e r p r e t (5 , exp (E ) ) .
2 E = i n t e g e r (0 ) ;
3 E = plus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ;
4 E = plus ( i n t e g e r ( 0 ) , p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ) ;
5 E = plus ( p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) , i n t e g e r ( 0 ) ) ;
6 E = plus ( p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) , p lus ( i n t e g e r ( 0 ) , i n t e g e r ( 0 ) ) ) ;
7 f a l s e .

As shown above, false is produced, indicating that this truly does exhaust the entire space.
You might have noticed that the above answers are a little off with respect to the bound. A bound of 5 was previously

generation expressions up to depth 5, but none of the above expressions are quite that deep. This is because what
we’re bounding here is instead of the recursion bound of the interpreter itself, as opposed to the recursion bound of
exp. This means that things like conjunction are bounded, even though they are innocuous. This is easily amended
by defining a different kind of custom metainterpreter, one that bounds specifically at calls and keeps track of the call
stack (specifically the things that have been called before). However, this is left as an exercise to the reader. As a
hint, if you’re interested in implementing something like this, you may want to take a look at the functor/3 built-in
procedure (http://www.swi-prolog.org/pldoc/doc_for?object=functor/3). This can be used to determine exactly
which procedure is being called in a call, and allows you to treat the procedure name as a normal atom.
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