
COMP 410
Fall 2019

Prolog Metainterpreters

Consider the definition of list append (named myAppend) shown below, which we will
make use of for example queries:

myAppend([], List, List).
myAppend([H|T], List, [H|Rest]) :-
 myAppend(T, List, Rest).

1.) Write a procedure named interp0, which acts as a metainterpreter that can handle
myAppend. As a hint, this metainterpreter needs only support for true, conjunction, and
calls. An example query is shown below:

?- interp0(myAppend([1, 2, 3], [4, 5], List)).
List = [1, 2, 3, 4, 5].

2.) Write a procedure named interp1, which will print out exactly what is called during
the course of execution. As a hint, writeln will print out a Prolog term, followed by a
newline. Most of this code should be identical to that of interp0; only how calls are
handled needs to be changed. An example query is shown below, complete with output
showing different calls made during execution of myAppend:

?- interp1(myAppend([1, 2, 3], [4, 5], List)).
myAppend([1,2,3],[4,5],_G1634)
myAppend([2,3],[4,5],_G1730)
myAppend([3],[4,5],_G1747)
myAppend([],[4,5],_G1764)
List = [1, 2, 3, 4, 5].

3.) Write a procedure named interp2, which works like interp1, but it also prints out
the result of calls. This should look much like interp1, and only the rule for calls
should change. An example query is shown below:

?- interp2(myAppend([1, 2, 3], [4, 5], List)).
Call: myAppend([1,2,3],[4,5],_G1634)
Call: myAppend([2,3],[4,5],_G1730)
Call: myAppend([3],[4,5],_G1747)
Call: myAppend([],[4,5],_G1764)
Return: myAppend([],[4,5],[4,5])
Return: myAppend([3],[4,5],[3,4,5])
Return: myAppend([2,3],[4,5],[2,3,4,5])
Return: myAppend([1,2,3],[4,5],[1,2,3,4,5])
List = [1, 2, 3, 4, 5].

4.) Write a procedure named interp3, which works like interp2 but it also displays
how deep the call stack is at any given moment. Perhaps the easiest way to track call
stack depth is to implement a helper which tracks the call stack depth. With this in
mind, unlike with interp1 and interp2, this will likely require you to change all rules
slightly to forward along and update the call stack depth as appropriate. An example
query is shown below (which looks a lot like the output of trace, which is no accident):

?- interp3(myAppend([1, 2, 3], [4, 5], List)).
Call (0): myAppend([1,2,3],[4,5],_G1634)
Call (1): myAppend([2,3],[4,5],_G1736)
Call (2): myAppend([3],[4,5],_G1759)
Call (3): myAppend([],[4,5],_G1782)
Exit (3): myAppend([],[4,5],[4,5])
Exit (2): myAppend([3],[4,5],[3,4,5])
Exit (1): myAppend([2,3],[4,5],[2,3,4,5])
Exit (0): myAppend([1,2,3],[4,5],[1,2,3,4,5])
List = [1, 2, 3, 4, 5].

