COMP 410
Fall 2019

Data Structures in Mercury

1.) Consider the following grammar, representing arithmetic expressions:

1 € Integer

e € Expression =1 | ©e | e1 Rey

d € UnaryOperation ::= negate

® € BinaryOperation ::= plus | times

Write Mercury type definitions below, corresponding to the above grammar. Try to make
your type definitions match the grammar as closely as possible. Multiple answers are
possible.

2.) Consider the definition of inductive lists, shown below:

e € ListElement
¢ € List ::= cons(e,?) | nil

Write Mercury type definitions below, corresponding to the above list definition. List
elements should be treated as a generic type.

3.) Write a Mercury procedure below which will extract all the numbers from a list which
are greater than five. An example query is shown below:

?- extract([9, 2, 6, 5], List).
List = [9, 6].

Be sure to write appropriate pred and mode annotations. You may assume the first
parameter will always be given. As a hint, you will needtouse if, then, else.

4.) The filter procedure generalizes the pattern of extracting elements from a list.
This works by parameterizing the computation used to determine if an element should

be in the output list. An example query is shown below, which ends up performing the
same operation as extract above:

?—- filter([9, 2, 6, 51,
(pred(Num::in) is semidet :- Num > 5),
List).

List = [9, 6].

To assist you, pred and mode annotations for £i1ter have already been provided.
Implement the £ilter procedure below, in Mercury. As a hint, you will need to use
if, then, else, along with call to call the passed procedure.

:— pred filter(list(T), pred(T), 1list(T)).
:— mode filter(in, in(pred(in) 1is semidet), out) is det.

