
Test Case Generation in Prolog

1 Background: Software Testing

In practice, testing is of the upmost importance in software development, with significant amounts of code, time, and effort
being devoted just to testing. For example, consider the JavaScript engines in Chrome and Firefox, which are responsible
for executing JavaScript code in the browser. For both codebases, approximately half the code is devoted just to testing,
which translates to several hundred thousand lines of testing code.

While this amount of testing code is impressive, these codebases are still subject to bugs. Developers aren’t perfect,
and they can miss important behaviors with the tests they write. As a codebase grows, later code added may invalidate
the assumptions made in code written at an earlier point. People writing tests might focus on things that they intuitively
think are hard to get write, while glossing over “simple” cases. In short, writing tests can be difficult, and the definition
of what it means to be a “good” test can change over time.

For these reasons, various machine-aided testing techniques exist which seek to produce test cases through some
automated process. Such techniques are usually employed in conjunction with normal human testing efforts, leading to
overall more thorough testing. For example, Mozilla (the creator of Firefox) has developed several automated tools to
produce tests for its JavaScript engine, which are run continuously in parallel with normal development efforts. These
tools have collectively found literally thousands of bugs missed by normal testing efforts.

2 Enter Prolog

So what does any of this have to do with Prolog? It turns out that Prolog can be used to produce test cases with relative
ease, at least compared to a number of competing techniques. What makes Prolog a good fit for this problem is that
Prolog allows us to say what a valid test case is, as opposed to how to generate it. This leads to test case generators which
are fairly concise, yet very expressive. That is, we can give very specific definitions regarding what “valid” means for a
given problem.

2.1 Example: Grammar-Based Testing

To see this sort of testing in practice, let’s consider the problem of testing an evaluator of Boolean expressions. To test
such a program, we need to generate syntactially valid Boolean expressions. For our purposes, we’ll use the following
grammar for Boolean expressions:

e ∈ BooleanExpression ::= true | false | and(e1, e2) | or(e1, e2) | not(e)

In this example, valid tests are comprised of syntactically-valid sentences according to the above grammar. With this in
mind, we’ll write a definition of what it means to be syntactically-valid in Prolog (named naive generator.pl in the
course resources):

1 boo leanExpress ion ( true ) .
2 boo leanExpress ion ( fa l se ) .
3 boo leanExpress ion ( and (E1 , E2 ) ) :−
4 boo leanExpress ion (E1 ) ,
5 boo leanExpress ion (E2 ) .
6 boo leanExpress ion (or (E1 , E2 ) ) :−
7 boo leanExpress ion (E1 ) ,
8 boo leanExpress ion (E2 ) .
9 boo leanExpress ion (not (E) ) :−

10 boo leanExpress ion (E) .
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In plain English, the above code states the following:

• true is a Boolean expression (line 1)

• false is a Boolean expression (line 2)

• and(E1, E2) is a Boolean expression (line 3), as long as E1 is a Boolean expression (line 4) and E2 is a Boolean
expression (line 5)

• or(E1, E2) is a Boolean expression (line 6), as long as E1 is a Boolean expression (line 7) and E2 is a Boolean
expression (line 8)

• not(E) is a Boolean expression (line 9) as long as E is a Boolean expression (line 10)

As one might expect, we can use the above code to check to see if a given input is syntactically valid:

?− boo leanExpress ion ( and ( true , fa l se ) ) .
true .
?− boo leanExpress ion (or ( true , no t a boo l ean ) ) .
fa l se .

We can also use the above code to generate valid Boolean expressions, just by changing the query. In the example
below, we keep pressing semicolon (;) to generate further solutions:

?− boo leanExpress ion (E) .
E = true ;
E = fa l se ;
E = and ( true , true ) ;
E = and ( true , fa l se ) ;
. . .

Each one of the above answers is a valid test case, which can be passed to the program under test with some additional
work.

2.2 Generating All Expressions

The output from the previous query was intentionally cut-off a bit early. If we ask for more answers, an inconvenient
pattern emerges:

E = and ( true , and ( true , true ) ) ;
E = and ( true , and ( true , fa l se ) ) ;
E = and ( true , and ( true , and ( true , true ) ) ) ;
E = and ( true , and ( true , and ( true , fa l se ) ) ) ;
E = and ( true , and ( true , and ( true , and ( true , true ) ) ) ) ;
. . .

As shown above, the tests generated end up being ever more deeply-nested versions of and, and only the right subexpression
of and is ever expanded. We never see expansion on the left subexpression of and, and we will never see an or or not

AST node.
All of these aforementioned problems are artifcats of Prolog’s depth-first search strategy; that is, the order in which

Prolog looks for solutions. Because and is present in the file before or and not, Prolog always selects and first. Additionally,
when we ask for an additional solution when and is involved, the last call made is always going to be the second call to
booleanExpression in the rule for and (line 5). As such, it will always be this particular call for which we will choose
alternative solutions, ultimately leading to ever more deeply nested and AST nodes on the right subexpression (E2).

A simple fix for this problem is to add a bound to the problem, which effectively constrains the depth of valid ASTs.
The general idea here is that we force failure to occur if we start generating an AST which is too deep. This forced failure
will eventually stop us from being able to produce more deeply nested and AST nodes, permitting us to expand upon
alterntaive calls to booleanExpression.
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Complete code showing this added bound is below (named bounded generator.pl in the course resources):

1 decBound ( In , Out) :−
2 In > 0 ,
3 Out i s In − 1 .
4
5 boundedExpression ( , true ) .
6 boundedExpression ( , fa l se ) .
7 boundedExpression (B1 , and (E1 , E2 ) ) :−
8 decBound (B1 , B2) ,
9 boundedExpression (B2 , E1 ) ,

10 boundedExpression (B2 , E2 ) .
11 boundedExpression (B1 , or (E1 , E2 ) ) :−
12 decBound (B1 , B2) ,
13 boundedExpression (B2 , E1 ) ,
14 boundedExpression (B2 , E2 ) .
15 boundedExpression (B1 , not (E) ) :−
16 decBound (B1 , B2) ,
17 boundedExpression (B2 , E) .

Central to the above code is the addition of a decBound helper procedure, which takes an input number In and produces an
output number Out (line 1). This checks if the input number is greater than 0 (line 2), failing if so. If this check fails, this
means that the bound is exceeded, and is ultimately the source of this forced failure. If failure does not occur here (that
is, the bound has not been exceeded), then the bound is decremented (line 3), putting the result of the decrementation in
Out.

The booleanExpression procedure has been renamed to boundedExpression, reflecting the augmentation of a bound.
The first parameter to boundedExpression is the current bound, and the second parameter is the AST from before. The
bulk of boundedExpression is the same as with booleanExpression, but now case has been taken to call decBound with
the current bound whenever a recursive call to boundedExpression is to be made. This makes sense because the depth
of the AST increases at every recursive call.

An example query is shown below, which asks for valid ASTs which are at most one node deep. Note that leaf nodes
do not contribute to this depth, reflected in the fact that the base cases for boundedExpression (lines 5-6) do not call
decBound, and in fact, ignore the bound parameter (using for this position).

?− boundedExpression (1 , E) .
E = true ;
E = fa l se ;
E = and ( true , true ) ;
E = and ( true , fa l se ) ;
E = and ( false , true ) ;
E = and ( false , fa l se ) ;
E = or ( true , true ) ;
E = or ( true , fa l se ) ;
E = or ( false , true ) ;
E = or ( false , fa l se ) ;
E = not ( true ) ;
E = not ( fa l se ) .
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