
COMP 410 Lecture 1
Kyle Dewey



About Me

• I research automated testing techniques 
and their intersection with CS education

• My dissertation used logic programming 
extensively

• This is my third time teaching this class



About this Class

• See something wrong?  Want something 
improved? Email me about it! 
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu


Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.



Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it 
relates to anything in reality.

• I can’t fix anything if I don’t know what’s 
wrong
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Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Line between input/output is blurry
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What this course isn’t

• Artificial intelligence

• Machine learning

• Theoretical



Syllabus



Outline

• Abstract Syntax Trees and evaluation

• SAT and Semantic Tableau



Abstract Syntax Trees 
and 

Evaluation



Abstract Syntax Tree

• Abbreviation: AST

• Unambiguous tree-based representation of 
a sentence in a language

• Very commonly used in compilers, 
interpreters, and related software
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Exercise: Second Side of 
AST/Evaluation Sheet



Evaluator Example: 
arithmetic_evaluator.py



SAT and Semantic 
Tableau



SAT Background
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SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is 
there an assignment of true/false to the 
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

(x ∧ ¬x)
No
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Relevance
Widespread usage in hardware and software verification



Relevance to Logic 
Programming

• Methods for solving SAT can be used to 
execute logic programs

• Logic programming can be phrased as SAT 
with some additional stuff



Semantic Tableau

• One method for solving SAT instances

• Basic idea: iterate over the formula

• Maintain subformulas that must be true

• Learn which variables must be true/false

• Stop at conflicts (unsatisfiable), or when 
no subformulas remain (have solution)
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(¬b ∨ a) ∧ b

[(¬b ∨ a), b] 
{}

[¬b, b] 
{}

[b] 
{b -> f}

[a, b] 
{}

[b] 
{a -> t}

[] 
{a -> t, 
 b -> t}
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