
COMP 410 Lecture 1
Kyle Dewey

About Me

• I research automated testing techniques
and their intersection with CS education

• My dissertation used logic programming
extensively

• This is my third time teaching this class

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

What is Logic
Programming?

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Line between input/output is blurry

What is this Course?

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

What this course isn’t

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

What this course isn’t

• Artificial intelligence

• Machine learning

• Theoretical

Syllabus

Outline

• Abstract Syntax Trees and evaluation

• SAT and Semantic Tableau

Abstract Syntax Trees
and

Evaluation

Abstract Syntax Tree

• Abbreviation: AST

• Unambiguous tree-based representation of
a sentence in a language

• Very commonly used in compilers,
interpreters, and related software

(1 + 2) - 3 * 4

(1 + 2) - 3 * 4

-

(1 + 2) - 3 * 4

-

+ *

(1 + 2) - 3 * 4

-

+ *

1 2 3 4

Exercise: First Side of
AST/Evaluation Sheet

-

+ *

1 2 3 4

Evaluation

-

+ *

1 2 3 4

Evaluation

-

+ *

1 2 3 4

Evaluation

-

+ *

1 2 3 4

Evaluation

-

+ *

1 2 3 4

Evaluation

1

-

+ *

2 3 4

Evaluation

1

1

-

+ *

2 3 4

Evaluation

1

1

-

+ *

2 3 4

Evaluation

1

1

2

-

+ *

3 4

Evaluation

1

1

2

2

-

+ *

3 4

Evaluation

1

1

2

2

3

-

*

3 4

Evaluation

1

1

2

2

3

+

-

*

3 4

Evaluation

1

1

2

2

3

+

-

*

3 4

Evaluation

1

1

2

2

3

+

-

*

3 4

Evaluation

1

1

2

2

3

+
3

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-

*

4

Evaluation

1

1

2

2

3

+
3

3

4

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

12

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-9

Exercise: Second Side of
AST/Evaluation Sheet

Evaluator Example:
arithmetic_evaluator.py

SAT and Semantic
Tableau

SAT Background

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

(x ∧ ¬x)

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

(x ∧ ¬x)
No

Relevance
Widespread usage in hardware and software verification

Relevance
Widespread usage in hardware and software verification

Relevance
Widespread usage in hardware and software verification

Relevance
Widespread usage in hardware and software verification

Relevance to Logic
Programming

• Methods for solving SAT can be used to
execute logic programs

• Logic programming can be phrased as SAT
with some additional stuff

Semantic Tableau

• One method for solving SAT instances

• Basic idea: iterate over the formula

• Maintain subformulas that must be true

• Learn which variables must be true/false

• Stop at conflicts (unsatisfiable), or when
no subformulas remain (have solution)

Positive Literals
a

Positive Literals
a

[a]
{}

Positive Literals
a

[a]
{}

[]
{a -> t}

Positive Literals
a

[a]
{}

[]
{a -> t}

Negative Literals
¬a

[¬a]
{}

Negative Literals
¬a

[¬a]
{}

Negative Literals
¬a

[]
{a -> f}

[¬a]
{}

Negative Literals
¬a

[]
{a -> f}

Logical And
a ∧ b

Logical And
a ∧ b

[a ∧ b]
{}

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t, b -> t}

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t, b -> t}

Logical And
a ∧ ¬a

Logical And
a ∧ ¬a
[a ∧ ¬a]
{}

Logical And
a ∧ ¬a
[a ∧ ¬a]
{}

[¬a]
{a -> t}

Logical And
a ∧ ¬a
[a ∧ ¬a]
{}

[¬a]
{a -> t}

Exercise: First Side of
SAT Sheet

Logical Or
a ∨ ¬a

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

[]
{a -> f}

Logical Or
a ∨ ¬a
[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

[]
{a -> f}

Examples

Example 1:
(¬b ∨ a) ∧ b

(¬b ∨ a) ∧ b

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

[b]
{a -> t}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t,
 b -> t}

Example 2:
(x ∨ ¬y) ∧ (¬x ∨ z)

(x ∨ ¬y) ∧ (¬x ∨ z)

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

[z]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

[z]
{y -> f}

[]
{y -> f,
 z -> t}

Exercise: Second Side of
SAT Sheet

