
COMP 410
Fall 2019

Midterm Practice Exam #2

Unification without Lists

Consider each of the following unification attempts. If the unification succeeds, record
any values any variables take. If the unification fails, say so.

1.) foo(1, X) = foo(Y, 2)

X = 2, Y = 1

2.) foo(1, X) = foo(X, 2)

false

3.) foo(1, _) = foo(X, 2)

X = 1

4.) foo(1, _) = foo(1, _)

true

5.) foo(1, 2, bar) = foo(X, _, _, _)

false

6.) foo(bar(baz), X) = foo(Y, Z), Y = bar(A)
X = Z, Y = bar(baz), A = baz

Unification with Lists

Consider each of the following unification attempts involving lists. If the unification
succeeds, record any values any variables take. If the unification fails, say so.

7.) [1, 2, _] = [A, B, C|D]

A = 1, B = 2, D = []

8.) A = [1, 2|B], B = [4]

A = [1, 2, 4], B = [4]

9.) [[A|B], C] = [[1, 2]|D]

A = 1, B = [2], D = [C]

10.) X = [A|[2]]

X = [A, 2]

11.) [A, [B, [C|D]]] = [1, [2, [3, 4]]]

A = 1, B = 2, C = 3, D = [4]

Consider the following inductive list definition, which makes use of Prolog atoms and
structures:

Now consider the following unifications, using Prolog lists. Rewrite these unifications
using the above definition.

12.) X = [1, 2, 3]

X = cons(1, cons(2, cons(3, nil)))

13.) X = [Y|Z]

X = cons(Y, Z)

14.) X = [A|[2]]

X = cons(A, cons(2, nil))

15.) X = [1, [2, [3]]]

X = cons(1, cons(cons(2, cons(cons(3, nil), nil)), nil))

More Recursion

16.) Consider the following mathematical definition of a recursive function:

Write an equivalent definition in Prolog.

f(0, 2).
f(1, 3).
f(N, Result) :-
 N > 1,
 MinOne is N - 1,
 MinTwo is N - 2,
 f(MinOne, T1),
 f(MinTwo, T2),
 Result is (3 * T1) + (4 * T2).

17.) Write a procedure named evensBetween, which will nondeterministically produce
all the even numbers within an inclusive range. As a hint, a number N is even if and
only if the clause 0 is mod(N, 2) is true. An example query is below:

?- evensBetween(1, 4, Even).
Even = 2 ;
Even = 4.

evensBetween(Min, Max, Min) :-
 Min =< Max,
 0 is mod(Min, 2).
evensBetween(Min, Max, Result) :-
 Min < Max,
 NewMin is Min + 1,
 evensBetween(NewMin, Max, Result).

fn =

⎧

⎪

⎨

⎪

⎩

2 if n = 0

3 if n = 1

(3× fn−1) + (4× fn−2) otherwise

18.) Consider the following code:

proc([], 0).
proc([_|A], B) :-
 proc(A, C),
 B is C + 1.

18.a) In your own words, what does this procedure compute?

The length of a given list.

18.b) This procedure is not very efficient when it comes to memory. Why is it
inefficient?

It uses O(N) stack space since it is not tail-recursive.

18.c) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

proc(List, Len) :-
 proc(List, 0, Len).

proc([], Accum, Accum).
proc([_|T], Accum, Len) :-
 NewAccum is Accum + 1,
 proc(T, NewAccum, Len).

19.) Define a procedure named isPrime which will determine if a given input number is
prime. You may introduce any helpers you wish. Example queries follow:

?- isPrime(1).
true .
?- isPrime(2).
true .
?- isPrime(3).
true .
?- isPrime(4).
false.

As a hint, the following Java-like code:

int x = y % z;

...is equivalent to the following Prolog code:

X is mod(Y, Z)

isPrime(Num) :-
 StartNum is Num - 1,
 isPrime(Num, StartNum).

isPrime(1, 0).
isPrime(_, 1).
isPrime(Num, CurNum) :-
 NonZero is mod(Num, CurNum),
 NonZero \== 0,
 NewNum is CurNum - 1,
 isPrime(Num, NewNum).

Test Case Generation

20.) Consider the following grammar-based definition of simplistic SQL queries:

20.a) Assume the only possible columns are named c1 and c2, and the only possible
tables are named t1 and t2. Write a generator of valid SQL query ASTs. An example
of a valid AST is select(c1, t1). Do not simply hardcode all possible ASTs.

columnName(c1).
columnName(c2).

tableName(t1).
tableName(t2).

sql(select(C, T)) :-
 columnName(C),
 tableName(T).

20.b) Bounds or related mechanisms are not necessary for this problem, at least as
described. Why?

From the description, there are a reasonably finite number of possible ASTs. (Another
possible answer) from the implementation, there is no recursion, which would potentially
allow us to “spam” the same rule indefinitely.

20.c) Name a change to this problem which would necessitate adding a bound or a
related mechanism, and explain why such a change would add this necessity.

Add a column or table name generator. Another answer is to add support for while
clauses, which can be chained arbitrarily long with Boolean operators like AND. In both
cases, these features make the space infinite, requiring us to inject failure somewhere
to prevent us from producing repetitive-looking ASTs.

