COMP 4IO Lecture 2

Kyle Dewey

SAT and Semantic
Tableau

SAT Background

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

$$
(x \quad V \neg y) \wedge(\neg x \quad \vee \quad z)
$$

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
$(\mathrm{x} V \neg \mathrm{~V}) ~ \wedge(\neg \mathrm{x} V \mathrm{z})$
Yes: x is true, z is true

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
($\mathrm{x} \vee \neg \mathrm{y}) ~ \wedge(\neg \mathrm{x} \vee \mathrm{z})$
Yes: x is true, z is true

$$
\text { (x } \wedge \neg x)
$$

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

$(\mathrm{x} \vee \neg \mathrm{y}) \wedge(\neg \mathrm{x} \mathrm{V} \mathrm{z})$ Yes: x is true, z is true
$(\mathrm{x} \wedge \neg \mathrm{x})$
No

Relevance

Widespread usage in hardware and software verification

Relevance

Widespread usage in hardware and software verification

Relevance

Widespread usage in hardware and software verification

-(Likely) used by AirBus to verify that flight control software does the right thing
-Lots of proprietary details so it's not 100% clear how this verification works, but SAT is still relevant to the problem

Relevance

Widespread usage in hardware and software verification

-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

Relevance to Logic Programming

- Methods for solving SAT can be used to execute logic programs
- Logic programming can be phrased as SAT with some additional stuff

Semantic Tableau

- One method for solving SAT instances
- Basic idea: iterate over the formula
- Maintain subformulas that must be true
- Learn which variables must be true/false
- Stop at conflicts (unsatisfiable), or when no subformulas remain (have solution)

Positive Literals

Positive Literals

-One subformula must be true: a
-Initially, we don't know what any variables must map to

Positive Literals

-For formula "a" to be true, it must be the case that a is true

Positive Literals

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals
-As in, the input formula is simply " $\neg \mathrm{a}$ "

Negative Literals

Negative Literals

-For subformula " $\neg \mathrm{a}$ " to be true, it must be the case that a is false

Negative Literals

-No subformulas remain, so we are done. The satisfying solution is that "a" must be false.

Logical And

a $\wedge \mathrm{b}$

Logical And

$\left.\begin{array}{cc}\hline \mathrm{a} \Lambda \mathrm{b} \\ {\left[\begin{array}{lll}{[\mathrm{a} \Lambda \mathrm{b}]}\end{array}\right.} \\ \}\end{array}\right]$

Logical And

-For $\mathrm{a} \wedge \mathrm{b}$ to be true, subformulas a and b must both be true

Logical And

-From the positive literal case, for formula a to be true, variable a must be true

Logical And

-From the positive literal case, for formula b to be true, variable b must be true

Logical And

-No subformulas remain, so we are done with the solution that both a and b must be true

Logical And

\square

Logical And

Logical And

Logical And

(1)
$\xrightarrow{[-2]}$
\times

-Now we have a problem: for formula \neg a to be true, it must be the case that variable a is false -We've already recorded that variable a must be true, which is the opposite of what we expect. -As such, we have a conflict - this formula is unsatisfiable

Exercise: First Side of SAT Sheet

Logical Or

Logical Or

Logical Or

Logical Or

Logical Or

Examples

Example I:
 ($\neg \mathrm{b}$ V a) \wedge b

Example 2:

$$
(\mathrm{x} V \neg \mathrm{y}) \wedge(\neg \mathrm{x} V \mathrm{z})
$$

Exercise: Second Side of

 SAT Sheet