
COMP 410
Fall 2023

Midterm Practice Exam #2

Unification with Lists

Consider each of the following unification attempts involving lists. If the unification
succeeds, record any values any variables take. If the unification fails, say so.

1.) [1, 2, _] = [A, B, C|D]

2.) A = [1, 2|B], B = [4]

3.) [[A|B], C] = [[1, 2]|D]

4.) X = [A|[2]]

5.) [A, [B, [C|D]]] = [1, [2, [3, 4]]]

Consider the following inductive list definition, which makes use of Prolog atoms and
structures:

Now consider the following unifications, using Prolog lists. Rewrite these unifications
using the above definition.

6.) X = [1, 2, 3]

7.) X = [Y|Z]

8.) X = [A|[2]]

9.) X = [1, [2, [3]]]

Recursion

10.) Write a procedure named allEqual which will succeed if all list elements are
equal to each other according to unification (=). You may introduce any helpers you
wish. Example calls are below:

?- allEqual([]).

true.

?- allEqual([1, 1, 1]).

true.

?- allEqual([1, 2, 3]).

false.

?- allEqual([1, X, 1]).

X = 1.

?- allEqual([A, B]).

A = B.

?- allEqual([X, 1, 2]).

false.

11.) Write a procedure named zip, which takes two lists of the same length, an output
list of the same length. The output list is a list of pair structures, where each pair
holds an element from each list, preserving order. If the lists are not the same length,
zip should fail, though you shouldn't need to explicitly check the length. Example calls
are below:

?- zip([], [], Output).

Output = [].

?- zip([hello], [goodbye], Output).

Output = [pair(hello, goodbye)].

?- zip([1, 2, 3], [a, b, c], Output).

Output = [pair(1, a), pair(2, b), pair(3, c)].

?- zip([A, B], [C, D], Output).

Output = [pair(A, C), pair(B, D)].

?- zip([foo], [bar, baz], Output).

false.

?- zip([foo, bar], [baz], Output).

false.

12.) Consider the following code:

proc([], 0).

proc([_|A], B) :-

	 proc(A, C),

	 B is C + 1.

12.a) In your own words, what does this procedure compute?

12.b) This procedure is not very efficient when it comes to memory. Why is it
inefficient?

12.c) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

13.) Define a procedure named isPrime which will determine if a given input number is
prime. You may introduce any helpers you wish. Example queries follow:

?- isPrime(2).

true .

?- isPrime(3).

true .

?- isPrime(4).

false.

As a hint, the following Java-like code:

int x = y % z;

...is equivalent to the following Prolog code:

X is mod(Y, Z)

Test Case Generation

14.) Consider the following grammar-based definition of simplistic SQL queries:

14.a) Assume the only possible columns are named c1 and c2, and the only possible
tables are named t1 and t2. Write a generator of valid SQL query ASTs. An example
of a valid AST is select(c1, t1). Do not simply hardcode all possible ASTs.

14.b) Bounds or related mechanisms are not necessary for this problem, at least as
described. Why?

14.c) Name a change to this problem which would necessitate adding a bound or a
related mechanism, and explain why such a change would add this necessity.

15.) Consider the following grammar:

tree ::= `node(` tree `,` tree `)` | `leaf`

15.a.) Write a generator for `tree` below. It's ok if the generator gets "stuck" generating
similar values over and over again.

15.b.) Write a modified version of your prior generator, which takes an additional depth
bound, and will only generate values that are no deeper than this bound.

