COMP 410 Lecture |

Kyle Dewey

About Me

® My research
® Automated program testing + CS education
® Programming language design

® My dissertation used logic programming
extensively

® ['ve taught this class a bunch

About this Class

® See something wrong?! Want something
improved? Email me about it!
(kyle.dewey(@csun.edu)

® | generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

® This guy sucks.
® This class is boring.

® This material is useless.

-1 can’t do anything in response to this

Good Feedback

This guy sucks, I can’t read his writing.
This class is boring, it’s way too slow.

This material is useless, | don’t see how it
relates to anything in reality.

| can’t fix anything if | don’t know what'’s
wrong

-I can actually do something about this!

What is Logic
Programming!?

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

1] ”

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming!?

® VWhat, not how

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

1] ”

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming!?

® What, not how

® No mutable state

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

1] ”

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming!?

® What, not how

® No mutable state
® Basis in formal logic

® = means =

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming!?

® What, not how

® No mutable state
® Basis in formal logic
® = means =

® Line between input/output is blurry

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is this Course?

-Strong emphasis on programming and using logic programming languages

-l want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)

—-Little bit of theory

What is this Course?

® Programming, programming, programming

-Strong emphasis on programming and using logic programming languages

-l want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)

—-Little bit of theory

What is this Course?

® Programming, programming, programming

® Thinking in a logic programming way

-Strong emphasis on programming and using logic programming languages

-l want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)

—-Little bit of theory

What is this Course?

® Programming, programming, programming
® Thinking in a logic programming way

® Applying logic programming without a logic
programming language

-Strong emphasis on programming and using logic programming languages
-l want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming

language (though you won’t realize that’s what you’re doing yet)
—-Little bit of theory

What this course isn’t

What this course isn’t

® Artificial intelligence

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

What this course isn’t

® Artificial intelligence

® Machine learning

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

What this course isn’t

® Artificial intelligence
® Machine learning

® Theoretical

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

Syllabus

SAT and Semantic
Tableau

SAT Background

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X V_'Y) A (—|X vV Z)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X V —|Y) A (—|X vV Z)
Yes: x is true, z is true

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X V —|Y) A (—|X vV Z)
Yes: x is true, z is true

(x AN —=x)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X V —|Y) A (—|X vV Z)
Yes: x is true, z is true

(x AN —=x)

No

Relevance

Widespread usage in hardware and software verification

-Verification as in _proving_ the system does what we intend
—Much stronger guarantees than testing
-Testing can prove the existence of a bug (a failed test), whereas verification proves the absence of bugs (relative to the theorems proven)

Relevance

Widespread usage in hardware and software verification

—Circuits can be represented as Boolean formulas

-Can basically phrase proofs as Circuit A BadThing. If unsatisfiable, then BadThing cannot occur. If satisfiable, then the solution gives the circumstance
under which BadThing occurs.

-Many details omitted (entire careers are based on this stuff)

Relevance

Widespread usage in hardware and software verification

—(Likely) used by AirBus to verify that flight control software does the right thing
-Lots of proprietary details so it’s not 100% clear how this verification works, but SAT is still relevant to the problem

Relevance

Widespread usage in hardware and software verification

-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

Relevance to Logic
Programming

® Methods for solving SAT can be used to
execute logic programs

® Logic programming can be phrased as SAT
with some additional stuff

Semantic Tableau

® One method for solving SAT instances

® Basic idea: iterate over the formula
® Maintain subformulas that must be true
® | earn which variables must be true/false

® Stop at conflicts (unsatisfiable), or when
no subformulas remain (have solution)

-There are many methods to this

Positive Literals

-As in, the input formula is simply “a”

Positive Literals

-One subformula must be true: a
-Initially, we don’t know what any variables must map to

Positive Literals

-For formula “a” to be true, it must be the case that a is true

Positive Literals

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals

-As in, the input formula is simply “=a”

Negative Literals

-One subformula must be true: —a
-Initially, we don’t know what any variables must map to

Negative Literals

-For subformula “—a” to be true, it must be the case that a is false

Negative Literals

-No subformulas remain, so we are done. The satisfying solution is that “a” must be false.

Logical And

Logical And

a N D

[a N D]
{}

—Initially, one subformula must be true:a A b
—Initially, we don’t know what any variable must map to

Logical And

-For a A b to be true, subformulas a and b must both be true

Logical And

—-From the positive literal case, for formula a to be true, variable a must be true

Logical And

—-From the positive literal case, for formula b to be true, variable b must be true

Logical And

-No subformulas remain, so we are done with the solution that both a and b must be true

Logical And

-Alternative example, showing a conflict

Logical And

a N —a

[a AN —a]

{}

Logical And

[—a]
{a -> t}

a —> f
Conflict
[]
{a -> t}

Logical And

X

-Now we have a problem: for formula —a to be true, it must be the case that variable a is false
-We’ve already recorded that variable a must be true, which is the opposite of what we expect.
-As such, we have a conflict - this formula is unsatisfiable

Exercise: First Side of
SAT Sheet

Logical Or

Logical Or

a V -a

[a V —a]

{}

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Examples

Example |:
(_Ib Vv a) AN D

(—|b Vv a)

A

b

Example 2:
(x V =y) N (0x V z)

(X V —|Y)

A

(—|X Vv Z)

Exercise: Second Side of
SAT Sheet

