
COMP 410 Lecture 1
Kyle Dewey

About Me

• My research

• Automated program testing + CS education

• Programming language design

• My dissertation used logic programming
extensively

• I’ve taught this class a bunch

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

-I can actually do something about this!

What is Logic
Programming?

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Line between input/output is blurry

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is this Course?

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What this course isn’t

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

What this course isn’t

• Artificial intelligence

• Machine learning

• Theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

Syllabus

SAT and Semantic
Tableau

SAT Background

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

(x ∧ ¬x)

SAT

• Short for the Boolean satisfiability problem

• Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true?

(x ∨ ¬y) ∧ (¬x ∨ z)
Yes: x is true, z is true

(x ∧ ¬x)
No

Relevance
Widespread usage in hardware and software verification

-Verification as in _proving_ the system does what we intend
-Much stronger guarantees than testing
-Testing can prove the existence of a bug (a failed test), whereas verification proves the absence of bugs (relative to the theorems proven)

Relevance
Widespread usage in hardware and software verification

-Circuits can be represented as Boolean formulas
-Can basically phrase proofs as Circuit ∧ BadThing. If unsatisfiable, then BadThing cannot occur. If satisfiable, then the solution gives the circumstance
under which BadThing occurs.
-Many details omitted (entire careers are based on this stuff)

Relevance
Widespread usage in hardware and software verification

-(Likely) used by AirBus to verify that flight control software does the right thing
-Lots of proprietary details so it’s not 100% clear how this verification works, but SAT is still relevant to the problem

Relevance
Widespread usage in hardware and software verification

-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

Relevance to Logic
Programming

• Methods for solving SAT can be used to
execute logic programs

• Logic programming can be phrased as SAT
with some additional stuff

Semantic Tableau

• One method for solving SAT instances

• Basic idea: iterate over the formula

• Maintain subformulas that must be true

• Learn which variables must be true/false

• Stop at conflicts (unsatisfiable), or when
no subformulas remain (have solution)

-There are many methods to this

Positive Literals
a

-As in, the input formula is simply “a”

Positive Literals
a

[a]
{}

-One subformula must be true: a
-Initially, we don’t know what any variables must map to

Positive Literals
a

[a]
{}

[]
{a -> t}

-For formula “a” to be true, it must be the case that a is true

Positive Literals
a

[a]
{}

[]
{a -> t}

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals
¬a

-As in, the input formula is simply “¬a”

[¬a]
{}

Negative Literals
¬a

-One subformula must be true: ¬a
-Initially, we don’t know what any variables must map to

[¬a]
{}

Negative Literals
¬a

[]
{a -> f}

-For subformula “¬a” to be true, it must be the case that a is false

[¬a]
{}

Negative Literals
¬a

[]
{a -> f}

-No subformulas remain, so we are done. The satisfying solution is that “a” must be false.

Logical And
a ∧ b

Logical And
a ∧ b

[a ∧ b]
{}

-Initially, one subformula must be true: a ∧ b
-Initially, we don’t know what any variable must map to

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

-For a ∧ b to be true, subformulas a and b must both be true

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

-From the positive literal case, for formula a to be true, variable a must be true

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t, b -> t}

-From the positive literal case, for formula b to be true, variable b must be true

Logical And
a ∧ b

[a ∧ b]
{}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t, b -> t}

-No subformulas remain, so we are done with the solution that both a and b must be true

Logical And
a ∧ ¬a

-Alternative example, showing a conflict

Logical And
a ∧ ¬a

[a ∧ ¬a]
{}

Logical And
a ∧ ¬a

[a ∧ ¬a]
{}

[¬a]
{a -> t}

[a, ¬a]
{}

[]
{a -> t}

a -> f

Conflict

Logical And
a ∧ ¬a

[a ∧ ¬a]
{}

[¬a]
{a -> t}

-Now we have a problem: for formula ¬a to be true, it must be the case that variable a is false
-We’ve already recorded that variable a must be true, which is the opposite of what we expect.
-As such, we have a conflict - this formula is unsatisfiable

Exercise: First Side of
SAT Sheet

Logical Or
a ∨ ¬a

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

[]
{a -> f}

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or
a ∨ ¬a

[a ∨ ¬a]
{}

[a]
{}

[¬a]
{}

[]
{a -> t}

[]
{a -> f}

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Examples

Example 1:
(¬b ∨ a) ∧ b

(¬b ∨ a) ∧ b

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

[b]
{a -> t}

(¬b ∨ a) ∧ b

[(¬b ∨ a), b]
{}

[¬b, b]
{}

[b]
{b -> f}

[a, b]
{}

[b]
{a -> t}

[]
{a -> t,
 b -> t}

Example 2:
(x ∨ ¬y) ∧ (¬x ∨ z)

(x ∨ ¬y) ∧ (¬x ∨ z)

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

[z]
{y -> f}

(x ∨ ¬y) ∧ (¬x ∨ z)

[(x ∨ ¬y), (¬x ∨ z)]
{}

[x, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{x -> t}

[¬x]
{x -> t}

[z]
{x -> t}

[]
{x -> t,
 z -> t}

[¬y, (¬x ∨ z)]
{}

[(¬x ∨ z)]
{y -> f}

[¬x]
{y -> f}

[]
{y -> f,
 x -> f}

[z]
{y -> f}

[]
{y -> f,
 z -> t}

Exercise: Second Side of
SAT Sheet

