
COMP 410 Lecture 2
Kyle Dewey

Abstract Syntax Trees
and

Evaluation

Abstract Syntax Tree

• Abbreviation: AST

• Unambiguous tree-based representation of
a sentence in a language

• Very commonly used in compilers,
interpreters, and related software

-Generally we work with ASTs instead of Strings or any other code representation

(1 + 2) - 3 * 4

-Key parts: we need parentheses to direct that 1 + 2 happens first. We know that the 3 * 4 should happen after the part in parentheses from PEMDAS rules

(1 + 2) - 3 * 4

-

-Lowest priority thing ends up in the top of the tree

(1 + 2) - 3 * 4

-

+ *

-Next level of priority

(1 + 2) - 3 * 4

-

+ *

1 2 3 4

-Next level of priority

Exercise: First Side of
AST/Evaluation Sheet

-

+ *

1 2 3 4

Evaluation

-Key point: bubble-up values from the leaves
-This can be implemented in code via a recursive function starting from the root (code in a bit later)

-

+ *

1 2 3 4

Evaluation

-We start evaluation from the root...

-

+ *

1 2 3 4

Evaluation

-In order to evaluate the root, we need to evaluate the left subtree of the root (+)

-

+ *

1 2 3 4

Evaluation

-In order to evaluate +, we need to evaluate the left subtree (as with the root)

-

+ *

1 2 3 4

Evaluation

1

-For arithmetic, leaves are simply numbers
-Evaluating a leaf returns the number held within

-

+ *

2 3 4

Evaluation

1

1

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

-

+ *

2 3 4

Evaluation

1

1

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

-

+ *

2 3 4

Evaluation

1

1

2

-As before, leaves just return the value held within

-

+ *

3 4

Evaluation

1

1

2

2

-Subtrees of + are now taken care of
-Now + has two values that it needs to work with...

-

+ *

3 4

Evaluation

1

1

2

2

3

-+ performs the actual addition

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now + is taken care of
-Going back to -, - now has the value of the left subtree, and it needs the value of the right subtree

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now we’re on *, which needs the value of the left subtree...

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now we’re on *, which needs the value of the left subtree...

-

*

3 4

Evaluation

1

1

2

2

3

+
3

-Leaves again return the values held within...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-Left subtree done; * now needs the value of the right subtree...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-Left subtree done; * now needs the value of the right subtree...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

4

-Leaf returns value held within

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

-Leaf is done. * now has both operands it needs...

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

12

-* performs the multiplication and returns the value

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-The root - node now has both operands...

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-9

-...and it returns the result of the subtraction

Exercise: Second Side of
AST/Evaluation Sheet

Evaluator Example:
arithmetic_evaluator.py

-Complete example online; we’ll live-code this in class

