
COMP 410
Fall 2024

Midterm Practice Exam #2 (Solutions)

This is representative of the kinds of topics and kind of questions you may be asked on the

midterm. This practice exam, along with assignments 3-6 and the in-class handouts from
weeks 4-9, are intended to be comprehensive of everything on the exam. That is, I will not ask
anything that’s not somehow covered by those sources.

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you, and these may
have anything on them, either printed or handwritten. Both sides of both sheets can be used.

Unification with Lists

Consider each of the following unification attempts involving lists. If the unification
succeeds, record any values any variables take. If the unification fails, say so.

1.) [1, 2, _] = [A, B, C|D]

A = 1, B = 2, D = []

2.) A = [1, 2|B], B = [4]

A = [1, 2, 4], B = [4]

3.) [[A|B], C] = [[1, 2]|D]

A = 1, B = [2], D = [C]

4.) X = [A|[2]]

X = [A, 2]

5.) [A, [B, [C|D]]] = [1, [2, [3, 4]]]

A = 1, B = 2, C = 3, D = [4]

6.) Consider the following inductive list definition, which makes use of Prolog atoms and
structures:

Now consider the following unifications, using Prolog lists. Rewrite these unifications
using the above definition.

6.a.) X = [1, 2, 3]

X = cons(1, cons(2, cons(3, nil)))

6.b.) X = [Y|Z]

X = cons(Y, Z)

6.c.) X = [A|[2]]

X = cons(A, cons(2, nil))

6.d.) X = [1, [2, [3]]]

X = cons(1, cons(cons(2, cons(cons(3, nil), nil)), nil))

Recursion

7.) Consider the following mathematical definition of a recursive function:

Write an equivalent definition in Prolog.

f(0, 2).
f(1, 3).
f(N, Result) :-
 N > 1,
 MinOne is N - 1,
 MinTwo is N - 2,
 f(MinOne, T1),
 f(MinTwo, T2),
 Result is (3 * T1) + (4 * T2).

fn =

⎧

⎪

⎨

⎪

⎩

2 if n = 0

3 if n = 1

(3× fn−1) + (4× fn−2) otherwise

8.) Write a procedure named evensBetween, which will nondeterministically produce
all the even numbers within an inclusive range. As a hint, a number N is even if and
only if the clause 0 is mod(N, 2) is true. An example query is below:

?- evensBetween(1, 4, Even).
Even = 2 ;
Even = 4.

evensBetween(Min, Max, Min) :-
 Min	 =< Max,
 0 is mod(Min, 2).
evensBetween(Min, Max, Result) :-
 Min	 < Max,
 NewMin is Min + 1,
 evensBetween(NewMin, Max, Result).

9.) Write a procedure named allEqual which will succeed if all list elements are equal
to each other according to unification (=). You may introduce any helpers you wish.
Example calls are below:

?- allEqual([]).
true.
?- allEqual([1, 1, 1]).
true.
?- allEqual([1, 2, 3]).
false.
?- allEqual([1, X, 1]).
X = 1.
?- allEqual([A, B]).
A = B.
?- allEqual([X, 1, 2]).
false.

allEqual([]).
allEqual([_]).
allEqual([H, H|Rest]) :-
 allEqual([H|Rest]).

10.) Write a procedure named zip, which takes two lists of the same length, an output
list of the same length. The output list is a list of pair structures, where each pair
holds an element from each list, preserving order. If the lists are not the same length,
zip should fail, though you shouldn't need to explicitly check the length. Example calls
are below:

?- zip([], [], Output).
Output = [].
?- zip([hello], [goodbye], Output).
Output = [pair(hello, goodbye)].
?- zip([1, 2, 3], [a, b, c], Output).
Output = [pair(1, a), pair(2, b), pair(3, c)].
?- zip([A, B], [C, D], Output).
Output = [pair(A, C), pair(B, D)].
?- zip([foo], [bar, baz], Output).
false.
?- zip([foo, bar], [baz], Output).
false.

zip([], [], []).
zip([H1|T1], [H2|T2], [pair(H1, H2)|Rest]) :-
 zip(T1, T2, Rest).

11.) We can represent a binary tree in Prolog using the following:
• leaf: At atom representing a leaf node
• internal(tree, value, tree): A structure recursively containing two trees and

some integer value
Write a procedure named sumTree that will compute the sum of all the elements in a
given binary tree. Leaf nodes are defined to have a sum of 0. Example queries are
shown below:

?- sumTree(leaf, Sum).
Sum = 0.
?- sumTree(internal(leaf, 5, leaf), Sum).
Sum = 5.
?- sumTree(internal(internal(leaf, 1, leaf),
 2,
 internal(leaf, 3, leaf)),
 Sum).
Sum = 6.

sumTree(leaf, 0).
sumTree(internal(Left, Value, Right), Sum) :-
 sumTree(Left, LeftSum),
 sumTree(Right, RightSum),
 Sum is LeftSum + Value + RightSum.

12.) Consider the following code, computing the length of a list:

len([], 0).
len([_|T], Len) :-
	 len(T, TLen),
	 Len is TLen + 1.

12.a) This procedure is not very efficient when it comes to memory. Why is it
inefficient?

It uses O(N) stack space since it is not tail-recursive.

12.b) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

len(List, Len) :-
 len(List, 0, Len).

len([], Accum, Accum).
len([_|T], Accum, Len) :-
 NewAccum is Accum + 1,
 len(T, NewAccum, Len).

13.) Consider the following code which appends two lists together:

append([], List, List).
append([H|T], List, Result) :-
 append(T, List, Rest),
 Result = [H|Rest].

13.a) This procedure is not very efficient when it comes to memory. Why is it
inefficient?

It uses O(N) stack space since it is not tail-recursive.

13.b) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

append([], List, List).
append([H|T], List, [H|Rest]) :-
 append(T, List, Rest).

14.) Define a procedure named isPrime which will determine if a given input number is
prime. You may introduce any helpers you wish. Example queries follow:

?- isPrime(2).
true .
?- isPrime(3).
true .
?- isPrime(4).
false.

As a hint, the following Java-like code:

int x = y % z;

...is equivalent to the following Prolog code:

X is mod(Y, Z)

isPrime(Num) :-
 FirstTest is Num - 1,
 isPrime(Num, FirstTest).

% isPrime: Number, CurrentTest
isPrime(_, 1).
isPrime(Num, Test) :-
 Test > 1,
 NonZero is mod(Num, Test),
 NonZero \== 0,
 NewTest is Test - 1,
 isPrime(Num, NewTest).

Test Case Generation

15.) Consider the following grammar-based definition of simplistic SQL queries:

15.a) Assume the only possible columns are named c1 and c2, and the only possible
tables are named t1 and t2. Write a generator of valid SQL query ASTs. An example
of a valid AST is select(c1, t1). Do not simply hardcode all possible ASTs.

columnName(c1).
columnName(c2).

tableName(t1).
tableName(t2).

sql(select(C, T)) :-
 columnName(C),
 tableName(T).

15.b) Bounds or related mechanisms are not necessary for this problem, at least as
described. Why?

From the description, there are a reasonably finite number of possible ASTs. (Another
possible answer) from the implementation, there is no recursion, which would potentially
allow us to “spam” the same rule indefinitely.

15.c) Name a change to this problem which would necessitate adding a bound or a
related mechanism, and explain why such a change would add this necessity.

Add a column or table name generator. Another answer is to add support for while
clauses, which can be chained arbitrarily long with Boolean operators like AND. In both
cases, these features make the space infinite, requiring us to inject failure somewhere
to prevent us from producing repetitive-looking ASTs.

16.) Consider the following grammar:

tree ::= `node(` tree `,` tree `)` | `leaf`

16.a.) Write a generator for `tree` below. It's ok if the generator gets "stuck" generating
similar values over and over again.

gen(leaf).
gen(node(Left, Right)) :-
 gen(Left),
 gen(Right).

16.b.) Write a modified version of your prior generator, which takes an additional depth
bound, and will only generate values that are no deeper than this bound.

genBound(_, leaf).
genBound(Bound, node(Left, Right)) :-
 Bound > 0,
 NewBound is Bound - 1,
 genBound(NewBound, Left),
 genBound(NewBound, Right).

