
COMP 410
Fall 2024

Final Practice Exam (Solutions)

The final exam is cumulative, so all handouts, labs, practice exams, and prior exams
are relevant. You may bring four 8.5 x 11 inch sheets of paper into the exam, and have
notes on both sides of both sheets. This practice exam only covers material since exam
2, so it focuses on performing logic programming in Python. Questions 1 and 2 are
representative of the sort of questions you'll get on the exam; questions 3 and 4 are
more difficult and intended to serve as extra practice.

1.) Consider the following Prolog procedure:

isName(alice).
isName(bob).
isName(janet).
isName(bill).

Write an equivalent generator function in Python, named isName. Each name should
be represented as a string. As a hint, isName should not take any parameters.

def isName():
 yield "alice"
 yield "bob"
 yield "janet"
 yield "bill"

2.) Consider the following Prolog procedure:

naturalNumber(0).
naturalNumber(N) :-
 naturalNumber(NMinusOne),
 N is NMinusOne + 1.

Write an equivalent generator function in Python, named naturalNumber. As a hint,
naturalNumber should not take any parameters.

def naturalNumber():
 yield 0
 for nMinusOne in naturalNumber():
 yield nMinusOne + 1

3.) Consider the following Prolog procedure:

selectElement([Head|_], Head).
selectElement([_|Tail], Element) :-
 selectElement(Tail, Element).

Write an equivalent generator function in Python, named selectElement. You can
assume you have the following definitions available for representing lists:

class Nil:
 def __init__(self):
 pass

class Cons:
 def __init__(self, head, tail):
 self.head = head
 self.tail = tail

Example usage of selectElement is below:

for n in selectElement(Cons(1, Cons(2, Cons(3, Nil())))):
 print(n)

Output:
1
2
3

def selectElement(inputList):
 if isinstance(inputList, Cons):
	 yield inputList.head
 for element in selectElement(inputList.tail):
 yield element

4.) Consider the following Prolog procedure, which nondeterministically selects different
values contained in a binary tree:

% tree ::= internal | node(tree, INT, tree)
treeElement(node(_, Value, _), Value).
treeElement(node(Left, _, _), Value) :-
 treeElement(Left, Value).
treeElement(node(_, _, Right), Value) :-
 treeElement(Right, Value).

The tree is represented in Python using the following two classes:

class Internal:
 def __init__(self):
 pass

class Node:
 def __init__(self, left, value, right):
 self.left = left
 self.value = value
 self.right = right

Write an equivalent generator function implementing treeElement in Python below.

def treeElement(node):
 if isinstance(node, Node):
	 yield node.value
 for value in treeElement(node.left):
 yield value
 for value in treeElement(node.right):
 yield value

