
COMP 410
Fall 2025

Midterm Practice Exam #2

This is representative of the kinds of topics and kind of questions you may be asked on the

midterm. This practice exam, along with assignments 3-4 and the in-class handouts on
introductory Prolog, unification in Prolog, repetition and structures in Prolog, lists in Prolog, and
the first half of the handout on recursion without accumulators, are intended to be
comprehensive of everything on the exam. That is, I will not ask anything that’s not somehow
covered by those sources.

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you, and these may
have anything on them, either printed or handwritten. Both sides of both sheets can be used.

Unification

Consider each of the following unification attempts. If the unification succeeds, record
any values any variables take. If the unification fails, say so.

1.) foo(1, X) = foo(Y, 2)

2.) foo(1, X) = foo(X, 2)

3.) foo(1, _) = foo(X, 2)

4.) foo(1, _) = foo(1, _)

5.) foo(1, 2, bar) = foo(X, _, _, _)

6.) foo(bar(baz), X) = foo(Y, Z), Y = bar(A)

Recursion Without Lists

7.) Consider the following mathematical definition of a recursive function:

Write an equivalent definition in Prolog.

fn =

⎧

⎪

⎨

⎪

⎩

2 if n = 0

3 if n = 1

(3× fn−1) + (4× fn−2) otherwise

8.) Write a procedure named evensBetween, which will nondeterministically produce
all the even numbers within an inclusive range. As a hint, a number N is even if and
only if the clause 0 is mod(N, 2) is true. An example query is below:

?- evensBetween(1, 4, Even).
Even = 2 ;
Even = 4.

9.) Define a procedure named isPrime which will determine if a given input number is
prime. You may introduce any helpers you wish. Example queries follow:

?- isPrime(2).
true .
?- isPrime(3).
true .
?- isPrime(4).
false.

As a hint, the following Java-like code:

int x = y % z;

...is equivalent to the following Prolog code:

X is mod(Y, Z)

Prolog Lists

Consider each of the following unification attempts involving lists. If the unification
succeeds, record any values any variables take. If the unification fails, say so.

10.) [1, 2, _] = [A, B, C|D]

11.) A = [1, 2|B], B = [4]

12.) [[A|B], C] = [[1, 2]|D]

13.) X = [A|[2]]

14.) [A, [B, [C|D]]] = [1, [2, [3, 4]]]

15.) Consider the following inductive list definition, which makes use of Prolog atoms
and structures:

Now consider the following unifications, using Prolog lists. Rewrite these unifications
using the above definition.

15.a.) X = [1, 2, 3]

15.b.) X = [Y|Z]

15.c.) X = [A|[2]]

15.d.) X = [1, [2, [3]]]

Recursion with Lists

16.) Write a procedure named allEqual which will succeed if all list elements are
equal to each other according to unification (=). You may introduce any helpers you
wish. Example calls are below:

?- allEqual([]).
true.
?- allEqual([1, 1, 1]).
true.
?- allEqual([1, 2, 3]).
false.
?- allEqual([1, X, 1]).
X = 1.
?- allEqual([A, B]).
A = B.
?- allEqual([X, 1, 2]).
false.

17.) Write a procedure named zip, which takes two lists of the same length, an output
list of the same length. The output list is a list of pair structures, where each pair
holds an element from each list, preserving order. If the lists are not the same length,
zip should fail, though you shouldn't need to explicitly check the length. Example calls
are below:

?- zip([], [], Output).
Output = [].
?- zip([hello], [goodbye], Output).
Output = [pair(hello, goodbye)].
?- zip([1, 2, 3], [a, b, c], Output).
Output = [pair(1, a), pair(2, b), pair(3, c)].
?- zip([A, B], [C, D], Output).
Output = [pair(A, C), pair(B, D)].
?- zip([foo], [bar, baz], Output).
false.
?- zip([foo, bar], [baz], Output).
false.

 

18.) We can represent a binary tree in Prolog using the following:
• leaf: At atom representing a leaf node
• internal(tree, value, tree): A structure recursively containing two trees and

some integer value
Write a procedure named sumTree that will compute the sum of all the elements in a
given binary tree. Leaf nodes are defined to have a sum of 0. Example queries are
shown below:

?- sumTree(leaf, Sum).
Sum = 0.
?- sumTree(internal(leaf, 5, leaf), Sum).
Sum = 5.
?- sumTree(internal(internal(leaf, 1, leaf),
 2,
 internal(leaf, 3, leaf)),
 Sum).
Sum = 6.

