COMP 410
Fall 2025

More Recursion and Accumulators in Prolog

1.) Write a procedure named suma11 that will find the sum of a list of numbers. The
sum of an empty list is zero. Do not write a helper procedure. An example query is
below:

?— sumAll([4, 3, 2, 7], X).

X = 16.

2.) Write a procedure named sublist that will nondeterministically return all the lists
which can be constructed from the elements in an input list. Do not write a helper
procedure. An example query is below, where semicolon (;) was repeatedly pressed to
get all answers:

?—- sublist([1, 2, 3], X).

X =11, 2, 31 ;

X = [1, 21 ;
X = [1/ 31
X = [1]

X = [2, 31 ;
X = [2] ;

X = [3] ;

X =17].



3.) Write two procedures named sumA11Accum which perform the same operation as
sumAl1, but they make use of an accumulator. The first sumA1l1Accum procedure
should simply call the second sumA11Accum procedure with an initial accumulator. An
example query is below:

?— sumAllAccum([3, 2, 8, 1], X).

X = 14.

4.) Write two procedures named reverse which will reverse the elements of a list. The
second procedure should make use of an accumulator, and the first procedure should
call the second with an initial accumulator. Your procedure should runin 0 (n). An
example query is below:

?- reverse([1l, 2, 3], X).

X =13, 2, 1].



