COMP 410 Lecture |

Kyle Dewey

About Me

| research automated testing techniques
and their intersection with CS education

My dissertation used logic programming
extensively

This is my second semester at CSUN

First time dedicating a whole course to
logic programming

About this Class

® See something wrong? Want something

improved?! Email me about it!
(kyle.dewey@csun.edu)

® | generally operate based on feedback

mailto:kyle.dewey@csun.edu
mailto:kyle.dewey@csun.edu

Bad Feedback

® This guy sucks.
® This class is boring.

® This material is useless.

-l can’t do anything in response to this

Good Feedback

® This guy sucks, | can’t read his writing.
® This class is boring, it'’s way too slow.

® T[his material is useless, | don’t see how it
relates to anything in reality.

® | can’t fix anything if | don’t know what’s
wrong

-1 can actually do something about this!

VWhat is Logic
Programming!

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to
solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku
solution, as opposed to directly finding a valid Sudoku solution.

-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally
blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it
does in math.

VWhat is Logic
Programming!

® VWhat, not how

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to
solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku
solution, as opposed to directly finding a valid Sudoku solution.

-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally
blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it
does in math.

VWhat is Logic
Programming!

® VWhat, not how

® No mutable state

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to
solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku
solution, as opposed to directly finding a valid Sudoku solution.

-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally
blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it
does in math.

VWhat is Logic
Programming!

® VWhat, not how

® No mutable state
® Basis in formal logic

® — means =

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to
solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku
solution, as opposed to directly finding a valid Sudoku solution.

-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally
blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it
does in math.

VWhat is Logic
Programming!

® VWhat, not how

® No mutable state
® Basis in formal logic
® = means =

® |ine between input/output is blurry

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to
solve it. This is called declarative programming.

—-For example: it’s generally easier to say what constraints must hold for a valid Sudoku
solution, as opposed to directly finding a valid Sudoku solution.

-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally
blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it
does in math.

What is this Course!

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you
to write in a logical way outside of a logic programming language (though you won’t realize
that’s what you’re doing yet)

~Little bit of theory

What is this Course!

® Programming, programming, programming

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you
to write in a logical way outside of a logic programming language (though you won’t realize
that’s what you’re doing yet)

~Little bit of theory

What is this Course!

® Programming, programming, programming

® Thinking in a logic programming way

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you
to write in a logical way outside of a logic programming language (though you won’t realize
that’s what you’re doing yet)

~Little bit of theory

What is this Course!

® Programming, programming, programming
® Thinking in a logic programming way

® Applying logic programming without a logic
programming language

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you
to write in a logical way outside of a logic programming language (though you won’t realize
that’s what you’re doing yet)

~Little bit of theory

What is this Course!

® Programming, programming, programming
® Thinking in a logic programming way

® Applying logic programming without a logic
programming language

® |ittle bit of theory later on

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you
to write in a logical way outside of a logic programming language (though you won’t realize
that’s what you’re doing yet)

~Little bit of theory

What this course isn’t

What this course isn’t

® Artificial intelligence

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic
programming. Now the term largely refers to machine learning. What it means is a moving
target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my
speciality.

What this course isn’t

® Artificial intelligence

® Machine learning

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic
programming. Now the term largely refers to machine learning. What it means is a moving
target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my
speciality.

What this course isn’t

® Artificial intelligence
® Machine learning

® Deeply theoretical

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic
programming. Now the term largely refers to machine learning. What it means is a moving
target.

—Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my
speciality.

Syllabus

Qutline

® Abstract Syntax Trees and evaluation

® SAT and Semantic Tableau

Abstract Syntax Trees
and
Evaluation

Abstract Syntax Tree

® Abbreviation:AST

® Unambiguous tree-based representation of
a sentence in a language

® Very commonly used in compilers,
interpreters, and related software

-Generally we work with ASTs instead of Strings or any other code representation

-Key parts: we need parentheses to direct that 1 + 2 happens first. We know that the 3 * 4
should happen after the part in parentheses from PEMDAS rules

—-Lowest priority thing ends up in the top of the tree

-Next level of priority

-Next level of priority

Evaluation

-Key point: bubble-up values from the leaves
-This can be implemented in code via a recursive function starting from the root (code in a
bit later)

Evaluation

-We start evaluation from the root...

Evaluation

-In order to evaluate the root, we need to evaluate the left subtree of the root (+)

Evaluation

-In order to evaluate +, we need to evaluate the left subtree (as with the root)

Evaluation

—-For arithmetic, leaves are simply numbers
—-Evaluating a leaf returns the number held within

Evaluation

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

Evaluation

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

Evaluation

-As before, leaves just return the value held within

Evaluation

-Subtrees of + are now taken care of
-Now + has two values that it needs to work with...

Evaluation

-+ performs the actual addition

Evaluation

-Now + is taken care of
-Going back to -, - now has the value of the left subtree, and it needs the value of the right
subtree

Evaluation

-Now we’re on *, which needs the value of the left subtree...

Evaluation

-Now we’re on *, which needs the value of the left subtree...

Evaluation

—-Leaves again return the values held within...

Evaluation

-Left subtree done; * now needs the value of the right subtree...

Evaluation

-Left subtree done; * now needs the value of the right subtree...

Evaluation

—Leaf returns value held within

Evaluation

-Leaf is done. * now has both operands it needs...

Evaluation

-* performs the multiplication and returns the value

Evaluation

-The root - node now has both operands...

Evaluation

-9

—...and it returns the result of the subtraction

Evaluator Example:

arilthme

vic_evaluator.rk'

(|

-Complete example online; we’ll live-code this in class

SAT and Semantic
Tableau

SAT Background

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assighment of true/false to the
variables which makes the formula true?

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assighment of true/false to the
variables which makes the formula true?

(X V_'Y) N (—|X V Z)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assighment of true/false to the
variables which makes the formula true?

(x V. —y) AN (0x V z)
Yes: x is true, z is true

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assighment of true/false to the
variables which makes the formula true?

(x V. —y) AN (0x V z)
Yes: x is true, z is true

(x AN —X)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assighment of true/false to the
variables which makes the formula true?

(x V. —y) AN (0x V z)
Yes: x is true, z is true

(x AN —X)

No

Relevance

Widespread usage in hardware and software verification

-Verification as in _proving_ the system does what we intend

—Much stronger guarantees than testing

-Testing can prove the existence of a bug (a failed test), whereas verification proves the
absence of bugs (relative to the theorems proven)

Relevance

Widespread usage in hardware and software verification

—Circuits can be represented as Boolean formulas
—Can basically phrase proofs as Circuit A BadThing. If unsatisfiable, then BadThing cannot

occur. If satisfiable, then the solution gives the circumstance under which BadThing occurs.
-Many details omitted (entire careers are based on this stuff)

Relevance

Widespread usage in hardware and software verification

—(Likely) used by AirBus to verify that flight control software does the right thing
—-Lots of proprietary details so it’s not 100% clear how this verification works, but SAT is still
relevant to the problem

Relevance

Widespread usage in hardware and software verification

-Nasa uses software verification for a variety of tasks; SAT is relevant, though other
techniques are used, too

Relevance to Logic
Programming

® Methods for solving SAT can be used to
execute logic programs

® | ogic programming can be phrased as SAT
with some additional stuff

Semantic Tableau

® One method for solving SAT instances

® Basic idea: iterate over the formula
® Maintain subformulas that must be true
® |earn which variables must be true/false

® Stop at conflicts (unsatisfiable), or when
no subformulas remain (have solution)

-There are many methods to this

Positive Literals

-As in, the input formula is simply “a”

Positive Literals

-One subformula must be true: a
~Initially, we don’t know what any variables must map to

Positive Literals

—-For formula “a” to be true, it must be the case that a is true

Positive Literals

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals

-As in, the input formula is simply “—a”

Negative Literals

-One subformula must be true: —a
~Initially, we don’t know what any variables must map to

Negative Literals

-For subformula “—a” to be true, it must be the case that a is false

Negative Literals

-No subformulas remain, so we are done. The satisfying solution is that “a” must be false.

Logical And

Logical And

a N D

la AN D]
)

~Initially, one subformula must be true:a A b
~Initially, we don’t know what any variable must map to

Logical And

-For a A b to be true, subformulas a and b must both be true

Logical And

-From the positive literal case, for formula a to be true, variable a must be true

Logical And

-From the positive literal case, for formula b to be true, variable b must be true

Logical And

-No subformulas remain, so we are done with the solution that both a and b must be true

Logical And

—-Alternative example, showing a conflict

Logical And

a N\ —a

[a A —a]

)

Logical And

Logical And

X

-Now we have a problem: for formula —a to be true, it must be the case that variable a is
false

-We’ve already recorded that variable a must be true, which is the opposite of what we
expect.

-As such, we have a conflict - this formula is unsatisfiable

Logical Or

Logical Or

a V —a

[a V —a]

)

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Examples

Example |:
(_Ib V a) A D

Example 2:
(X Vv _'Y) N (—|X V Z)

