
Second-Order Procedures

1 Motivation

At this point in time, we’ve seen a whole bunch of examples involving queries with multiple answers. For example, consider
the following procedure definition:

1 foo (3) .
2 foo (2) .
3 foo (1) .

With the above definition in mind, we can get multiple answers from the same query, like so:

?− f oo (X) .
X = 3 ;
X = 2 ;
X = 1 .

As humans reading the above output, it’s intuitive to think of these as a set of solutions. However, Prolog takes a decidedly
different viewpoint. Instead, Prolog views these as three separate worlds, each yielding one solution. Most importantly,
these worlds do not collide; for example, the world wherein X = 1 is distinct from the world where X = 2.

The distinction here is subtle, and up until this point it hasn’t really made much of a difference However, a key query
will reveal a limitation with Prolog’s model, even for such a simple example as the one above. This query is shown below,
in English:

What are all the answers to foo(X), in ascending order according to X?

The above query may seem trivial at first: just take the answers we had before (namely, X = 3; X = 2; X = 1), and put
them in ascending order (yielding X = 1; X = 2; X = 3). Sorting (with a library-provided sort/2 procedure) is already
available, so this should be easy.

However, in order to sort something, we need a list of the things to sort. The output of foo(X) is not a Prolog list,
despite the fact that we can think of it as a list. As such, we don’t actually have the necessary input list available. This
might sound like a trivial problem (I mean, the list is right there on the screen), but there is, in fact, no way to get this
list using only the Prolog we’ve seen so far.

There is a fundamental reason why we can’t get such a list: each separate answer exists in a separate world, and so
far none of the code we’ve seen crosses world boundaries. To better understand this problem, consider the graph below,
which shows how different worlds “split off” from the original foo(X) query. Each edge is labeled with the line number of
the corresponding code in the foo definition that leads to a split.

foo(X)

X = 3

1

X = 2

2

X = 3

3

1

As shown above, each world is completely distinct. Additionally, while worlds can split off into further worlds, there has
(so far) been no way for two worlds to rejoin later. We’ve forced the exploration of worlds to strictly follow a tree, as
we did with solving SAT instances with semantic tableau. This tree-based approach breaks down when asking queries
over multiple solutions, since this requires us to look at each of the leaves in the tree. Since these leaves live in distinct
worlds, any analysis over leaves has been limited to what we can do as humans reading the output. Crucially, we cannot
run Prolog code over all these leaves, since that would require us to join together these leaves somewhere to collect all the
results in one place. With this sort of joining in mind, we’d need a graph that looks more like the following:

foo(X)

X = 3

1

X = 2

2

X = 3

3

Answers = [3, 2, 1]

Once we have something like Answers above, we’d be able to perform the all-important sort, as with sort(Answers,

SortedAnswers). However, as of yet, we haven’t seen anything that can perform this sort of join.

2 Enter Second-Order Procedures

This sort of join operation is precisely what second-order procedures do, which are built-in operations in Prolog. These
operations are named second-order from the fact that they operate over multiple paths in the sort of tree structure above
(performing a join), as opposed to working over just a single path. Equivalently, one can think of second-order procedures
as working over sets of solutions instead of a single solution.

Without further ado, we will translate the original English query to Prolog using a second-order procedure, specifically
findall/3. This translation is shown below:

?− f indal l (X, foo (X) , Answers) , s o r t (Answers , SortedAnswers) .
Answers = [3 , 2 , 1] ,
SortedAnswers = [1 , 2 , 3] .

As the name findall suggests, the findall second-order procedure finds all answers for which the given query is true.
The above Prolog query can be read as follows: find all X (the first parameter) such that foo(X) is true (the second
parameter), and put all the various satisfying values of X into the list Answers, ordered by when they were found. With
this in mind, we get the key Answers list in the same order as we expected in the graph before.

2.1 Capturing Multiple Variables

While the above usage of findall was sufficient for getting all the answers from the foo procedure, we may want to
capture more than one variable at a time. For example, consider the bar procedure below, which takes two parameters:

1 bar (a , b) .
2 bar (c , d) .
3 bar (e , f) .

To capture both parameters, we’ll need to provide a template to findall which holds the sort of pattern we want to
capture for each satisfying answer. This is perhaps most easily shown with code, so an example is below:

2

?− f indal l (pa i r (A, B) , bar (A, B) , Answers) .
Answers = [pa i r (a , b) , pa i r (c , d) , pa i r (e , f)] .

As shown, the template goes into the first parameter of the call to findall. This particular template states that for each
satisfying solution, a structure named pair will be collected (an arbitrary name), which holds variables A and B. As for
how variables A and B get values, this can be seen in the second parameter specifying the query bar(A, B). This can
be read as calling bar(A, B), and for each satisfying solution, a corresponding pair(A, B) will be collected. This pair

effectively saves the result of the query to bar, and these saved answers are collected as a list in Answers.
Note that this use of a template isn’t a special case; a variable alone is another valid template. With that in mind,

the use of X in the prior example involving findall and foo was also using a template, it’s just that the template was
merely X.

It is not necessary for a template to capture all variables involved; you only need to capture the portions you care
about. For example, let’s say we were interested in only the first parameter to bar/2. With this in mind, we can write a
findall template that captures the first parameter, shown below:

?− f indal l (X, bar (X,) , Answers) .
Answers = [a , c , e] .

As shown, since X occupied the position of the first parameter in the call to bar/2, Answers only considers the first
parameter in its answers.

2.2 Enter bagof/3 and Existential Quantification

The sort of join that is being performed can have certain nuances, particularly when multiple variables are involved. As
such, there exist other second-order procedures outside of findall/3, which all behave in slightly different ways. The
first of these we will look at is that of bagof/3.

The bagof/3 procedure takes the same three parameters as findall/3, namely a template, a query, and a list of
answers. However, bagof/3 behaves somewhat differently with these components. The first difference we will look at is
what happens for queries which produce no answers and fail. The findall/3 procedure will produce an empty list of
answers in such a case, whereas the bagof/3 procedure itself will fail. This is illustrated in the queries below involving
the built-in fail procedure, which always fails:

?− f indal l (X, f a i l , Answers) .
Answers = [] .

?− bagof (X, f a i l , Answers) .
fa l se .

To see further examples between findall/3 and bagof/3, we’ll introduce a new toy procedure baz/3, defined below:

1 baz (a , a , c) .
2 baz (a , b , c) .
3 baz (a , c , c) .
4 baz (b , c , d) .

Now, let’s issue some queries involving findall/3, bagof/3, and baz/3. First, let’s say we’re interested in the last
parameter to baz/3. We can collect this last parameter with findall/3, shown below:

1 ?− f indal l (X, baz (, , X) , Answers) .
2 Answers = [c , c , c , d] .

As shown, the answer c appears three times, because there are three separate answers with c. Other than that, the above
output should be unsurprising. However, the same query with bagof/3 yields something entirely different:

1 ?− bagof (X, baz (, , X) , Answers) .
2 Answers = [c] ;
3 Answers = [c] ;
4 Answers = [c] ;
5 Answers = [d] .

With the semicolon (;), we had to ask bagof/3 for additional solutions. That is, bagof/3 didn’t actually put all the
solutions together.

3

The reason this happened is because bagof/3 treats variables in the query different from variables in findall/3.
Specifically, findall/3 treats all variables in the query as being existentially quantified, whereas bagof/3 does not treat
such variables as being existentially quantified. (Oh, is that all!)

As for what “existential quantification” means in this context, this has to do with what variables are given values
when. With first-order procedures (everything we’ve seen before this handout), variables getting values was determined
solely by unification. Once a variable received a value, this value was set in stone; variables are immutable. However, when
second-order procedures come into play, this suddently gets tricky since we’re dealing with queries which operate over
multiple leaves in the sort of graph shown before. Phrased another way, what happens to variables in between different
solutions to the same query? There are two general ways to view a variable in this context:

1. In between different solutions to the query, variables effectively “reset”. That is, a variable can hold a particular
value only while processing a single solution; when we go to compute the next solution, the variable is refreshed, as
if it never recieved a value. We refer to such variables as being existentially quantified.

2. Variables maintain values across solutions as if they were part of the computation to form a single solution. That is,
once a variable gets a value, it keeps this value. This describes the normal execution rules of Prolog. Such variables,
in contrast to existentially quantified variables, are universally quantified : they apply over all solutions, as opposed
to just a single solution.

Here is where the difference between findall/3 and bagof/3 lies. With findall/3, variables are always existentially
quantified. To illustrate this, let’s again consider the query involving findall/3 above:

1 ?− f indal l (X, baz (, , X) , Answers) .

Recall that each use of underscore (\) refers to a different variable, so we can rewrite this query to the following:

1 ?− f indal l (X, baz (A, B, X) , Answers) .
2 Answers = [c , c , c , d] .

With findall/3, the variables A, B, and X are all existentially quantified, meaning they can vary between the computation
of different solutions to baz. As such, there is no requirement that the A for one solution be the same as an A from another
solution. The same cannot be said for the same query using bagof/3, shown below with explicit A and B variables instead
of underscore (\):

1 ?− bagof (X, baz (A, B, X) , Answers) .
2 A = B, B = a ,
3 Answers = [c] ;
4 A = a ,
5 B = b ,
6 Answers = [c] ;
7 A = a ,
8 B = c ,
9 Answers = [c] ;

10 A = b ,
11 B = c ,
12 Answers = [d] .

As shown above, A and B remain fixed for particular X answers. This is why bagof/3 gives multiple solutions: it can end
up leading to unifications of variables in the query which survive past the bagof/3 call. This is not true of findall/3,
which will not maintain variable bindings beyond the call.

With bagof/3, we can explicitly request that a variable be existentially quantified by using the carat (^) operator.
Such usage is illustrated below, which runs the same query as above but asks that variables A and B be existentially
quantified:

1 ?− bagof (X, AˆBˆbaz (A, B, X) , Answers) .
2 Answers = [c , c , c , d] .

The above query ends up giving us the same result as the findall/3 query, as now variables A and B are existentially
quantified. The only difference here is that findall/3 performed this existential quantification automatically, whereas
here with bagof/3 we explicitly had to specify it.

The real power in bagof/3 is that we can selectively existentially quantify variables. To illustrate this, consdier the
query below:

4

1 ?− bagof (X, Aˆbaz (A, B, X) , Answers) .
2 B = a ,
3 Answers = [c] ;
4 B = b ,
5 Answers = [c] ;
6 B = c ,
7 Answers = [c , d] .

The above query specifies that A must be existentially quantified, but not B. This ends up merging the last two answers
together, as:

• The first parameter is allowed to vary between different solutions, so the last two baz/3 facts are compatible despite
the fact that one starts with a and the other starts with b.

• The second parameter must be the same between the different solutions, which in this case is ok since the last two
baz/3 facts have c as the second parameter

• As for the third parameter, this is implicitly existentially quantified because X appears in the template (which is
simply X in this example), allowing for different answers to appear here (namely c and d). If the variables in the
template weren’t implicitly existentially quantified, bagof/3 wouldn’t be very useful, as it would force all answers
to be the same.

As another example, consider the modified query below, which existentially quantifies B instead of A:

1 ?− bagof (X, Bˆbaz (A, B, X) , Answers) .
2 A = a ,
3 Answers = [c , c , c] ;
4 A = b ,
5 Answers = [d] .

The above query ends up merging together the first three facts into one set of answers ([c, c, c]), as the existential
quantification of B allows the second parameter of baz/3 to vary between the answers. This overcomes the fact that the
first three facts have incompatible second parameters (namely, a, b, and c). Since A is not existentially quantified, the
first parameter must be the same for all these answers, and is set to a for the first batch of answers. For the second batch
of answers, there is only the last baz/3 fact in play left, namely baz(b, c, d). The answer of A = b, Answers = [d]

corresponds to this fact, where the second parameter (c) is ignored, again because of the existential quantification of B.

2.3 Getting Unique Answers with setof/3

The previous queries involving findall/3 and bagof/3 occasionally involved duplicate answers. For example, consider
the query below, which duplicates the answer c three times:

1 ?− f indal l (X, baz (, , X) , Answers) .
2 Answers = [c , c , c , d] .

If duplicate answers are not desired, then we can use the setof/3 second-order procedure instead of the findall/3

or bagof/3 procedures. The setof/3 procedure works exactly like bagof/3 (including the bits about optional existential
quantification of variables), except the list of answers is passed through sort/2 before being returned. This has the
effect of both sorting the answers, and removing duplicate answers (yes, sort/2 removes duplicates in addition to sorting,
whether you want it to or not).

With all this in mind, we can rewrite the above query using setof/3, shown below:

1 ?− s e t o f (X, AˆBˆbaz (A, B, X) , Answers) .
2 Answers = [c , d] .

As shown, no more duplicate answers are present, so there is only one c instead of three.
Going way back to the original problem in the motivation, setof/3 can be used to quite succintly solve it, like so:

1 ?− s e t o f (X, foo (X) , Answers) .
2 Answers = [1 , 2 , 3] .

This saves the need of passing Answers through sort/2, since setof/3 internally handles the sorting for us.

5

3 Use Case: A Metainterpreter which Randomly Orders Nondeterministic
Calls

We end this discussion with a use case harking back to an important discussion egarding making the problem space
explorable for test case generation. An example test case generator is shown below, which suffers from the sort of
problems we’ve discussed with infinitely large search spaces:

1 exp (i n t e g e r (1)) .
2 exp (p lus (E1 , E2)) :−
3 exp (E1) ,
4 exp (E2) .

As shown, exp/1 is infinitely recursive when used as a test case generator, leading to issues where the rightmost operand
in plus (namely E2) will be “spammed” at the cost of the leftmost operand (E1).

During class, one of the proposed solutions was to somehow change Prolog so that it executes nondeterministic calls in
a random order, instead of always trying them in the same order as presented in the file. This is a great idea, as it both
solves the original problem, and leads to a way of performing randomized test case generation. However, at the time, we
didn’t have enough Prolog knowledge under our belts to be able to do this.

Now that we have metainterpreter skills and second-order procedures, we can tackle this problem. Since we’re only
going to change how calls work, the rules handling true, conjunction, and disjunction are all standard:

1 i n t e r p r e t (t rue) :− ! .
2 i n t e r p r e t ((A, B)) :−
3 ! ,
4 i n t e r p r e t (A) ,
5 i n t e r p r e t (B) .
6 i n t e r p r e t ((A; B)) :−
7 ! ,
8 (i n t e r p r e t (A) ; i n t e r p r e t (B)) .

In constrast, the rule for calls is far more interesting. Intuitively, the call rule needs to do the following, in order
(written somewhat specifically to how we will approach this problem):

1. Determine what different alternatives are available for calling, yielding a list of alternatives.

2. Put this list in a random order.

3. Nondeterministically select an alternative from this list, and move foreward executing the chosen alternative. Since
the choice is nondeterministic, all alternatives will be explored. Since these choices were put in a random order by
the previous step, this effectively performs exploration of alternatives in a random order.

With the first step above, this sounds a lot like what clause/2 does, but now the alternatives are put into a list as
opposed to being nondeterministically chosen. Here we can use a second-order procedure to collect all the possibilities
returned by clause/2 into a single list. We start doing this below:

i n t e r p r e t (Ca l l) :−
f indal l (pa i r (Cal l , Body) , clause (Cal l , Body) , Pa i r s) ,
. . .

The above snippet will collect Call/Body pairs into Pairs, where each Call/Body pair is derived from a call to clause/2.
The collection of the different bodies to execute (Body) should be straightforward: these are alternative code bodies to
execute moving forward. However, the collection of Call is pretty subtle, especially considering we already seemingly have
access to Call. The reason why Call is included here has to do with existential variable quantification. Each different
alternative is permitted to unify with Call differently, resulting in a different variant of Call depending on which body
is chosen. By putting Call directly in the template, we not only save which Call variant applies to the given body, but
we also allow for each clause/2 solution to unify with Call differently. This is because the variables in Call will be
existentially quantified, due to its presence in the template (with pair(Call, Body)).

An example using foo(X) is shown below, which illustrates this problem. Let’s say we just collected the body, like so:

?− Cal l = foo (X) , f indal l (Body , clause (Cal l , Body) , Bodies) .
Ca l l = foo (X) ,
Bodies = [true , true , t rue] .

6

As shown, while the unification of the clause head (the foo(X) part) does occur internally in clause/2, the result is
effectively discarded as nothing in the template saves the call (Call). In constrast, this information is retained in the
following modified query, which matches up with what the previous code snippet with findall/3 does:

?− Cal l = foo (X) , f indal l (pa i r (Cal l , Body) , clause (Cal l , Body) , Pa i r s) .
Ca l l = foo (X) ,
Pa i r s = [pa i r (foo (3) , t rue) , pa i r (foo (2) , t rue) , pa i r (foo (1) , t rue)] .

As shown above, each element in Pairs now holds what the call itself unifies to in its given answer (the first parameter to
pair), along with the remaining code to execute (the second parameter to pair). Note that the original call is unchanged,
thanks to existential quantification (that is, Call = foo(X), as in the original query).

For the second step wherein the list of alternatives is put in random order, we can conveniently use the random permutation/2

procedure, available in SWI-PL’s libraries. The random permutation/2 procedure will randomly reorder an input list (the
first parameter), resulting in an output reordered list (the second parameter). This reordering is done deterministically;
only a single random reordering is chosen, even though many may be available in general.

For the third step, we can nondeterministically select with SWI-PL’s member/2 procedure, and finally move forward
with execution via a recursive call to the interpret/1 procedure we’re defining.

The complete code implementing calls is shown below:

1 i n t e r p r e t (Ca l l) :−
2 f indal l (pa i r (Cal l , Body) , clause (Cal l , Body) , Bodies) ,
3 random permutation (Bodies , RandomBodies) ,
4 member(pa i r (Cal l , Body) , RandomBodies) ,
5 i n t e r p r e t (Body) .

Of special note in the above code snippet is line 4, which does the following succintly:

• Nondeterministically select a pair from RandomBodies.

• Unify the call in the chosen pair with the preexisting variable Call, effectively performing unification with the clause
head.

• Unify the body in the chosen pair with Body, getting the remainder to interpret. Note that while variable Body

was previously syntactically present in line 2, since Body was in the template to findall/3 in that case, it was
existentially quantified. As such, before line 4, Body did not have any known value. This is unlike Call, which was
a parameter to interpret/1 on line 1.

The complete code for this metainterpreter is shown below for convenience:

1 i n t e r p r e t (t rue) :− ! .
2 i n t e r p r e t ((A, B)) :−
3 ! ,
4 i n t e r p r e t (A) ,
5 i n t e r p r e t (B) .
6 i n t e r p r e t ((A; B)) :−
7 ! ,
8 (i n t e r p r e t (A) ; i n t e r p r e t (B)) .
9 i n t e r p r e t (Ca l l) :−

10 f indal l (pa i r (Cal l , Body) , clause (Cal l , Body) , Bodies) ,
11 random permutation (Bodies , RandomBodies) ,
12 member(pa i r (Cal l , Body) , RandomBodies) ,
13 i n t e r p r e t (Body) .

7

	Motivation
	Enter Second-Order Procedures
	Capturing Multiple Variables
	Enter bagof/3 and Existential Quantification
	Getting Unique Answers with setof/3

	Use Case: A Metainterpreter which Randomly Orders Nondeterministic Calls

