
COMP 410
Spring 2018

Final Practice Exam

The topics on this practice exam reflect ONLY those which have been covered since the
last exam. The real final is CUMULATIVE, so it will include questions similar to the
previous practice exams. However, the final will be biased towards the sort of questions
below.

Prolog Metainterpreters

1.) Write a metainterpreter which shows the number of conjunctions which were needed
to compute a particular solution. Example queries follow. Your metainterpreter needs to
handle only the rules necessary to execute these queries below.

?- interpret((X is 1 + 1, Y is 2 + 2), ConjunctionCount).
X = 2, Y = 4, ConjunctionCount = 1.

% This definition is used in the query below
% myLength([], 0).
% myLength([_|T], Len) :-
% myLength(T, TLen),
% Len is TLen + 1.

?- interpret(myLength([a, b, c, d], Len), ConjunctionCount).
Len = 4, ConjunctionCount = 4.

Second-Order Procedures

2.) Consider the following procedure:

foo(1, 2, 3, 4).
foo(1, 2, 4, 3).
foo(3, 4, 1, 2).
foo(1, 2, 1, 6).

With the above procedure in mind, provide answers to the following queries. You
should provide solutions for all variables which have solutions (hint: this won’t
necessarily be all variables involved).

2.a) ?- findall(A, foo(A, B, C, D), E).

2.b) ?- bagof(bar(C, D), foo(A, B, C, D), E).

2.c) ?- bagof(bar(A, C, D), foo(A, B, C, D), E).

2.d) ?- bagof(A, C^D^foo(A, B, C, D), E).

2.e) ?- setof(A, B^D^foo(A, B, C, D), E).

Mercury

3.) Write a procedure named sublist which will take a list and nondeterministically
produce lists which contain contain elements in the input list. Example queries follow:

?- sublist([], List).
List = [].

?- sublist([1], List).
List = [1] ;
List = [].

?- sublist([1, 2], List).
List = [1, 2] ;
List = [1] ;
List = [2] ;
List = [].

Be sure to write appropriate pred and mode annotations. You only need to write mode
annotations corresponding to the queries above.

4.) Write a procedure that conforms to the following pred and mode annotations:

:- pred foo(int, int).
:- mode foo(in, out) is multi.
:- mode foo(in, in) is semidet.

5.) Consider the following Mercury code, which does not compile as written:

:- type my_type(A) ---> foo(A) ; bar(A, A) ; baz(A, A, A).

:- pred something(my_type(A), A).
:- mode something(in, out) is det.
something(foo(A), A).
something(bar(A, _), A).

5.a) Why doesn’t this code compile?

5.b) It is possible to get this code to compile by changing the type definition. Write a
revised type definition below which will allow this code to compile. You may assume
that this code is in complete isolation, so changing the type definition won’t break
anything elsewhere.

5.c) It is possible to get this code to compile by changing the mode annotation. Write a
revised mode annotation below which will allow this code to compile. As before, you
may assume the code is in complete isolation.

5.d) It is possible to get this code to compile by adding another line of code at the end.
Write this added line below. This line may do whatever it wants, as long as it allows the
code to compile. As before, you may assume the code is in complete isolation.

