
COMP 410 Lecture 1
Kyle Dewey

About Me

• My research

• Automated program testing + CS education

• Programming language design

• My dissertation used logic programming
extensively

• I’ve taught this class a bunch

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

-I can actually do something about this!

What is Logic
Programming?

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Inputs/outputs are blurred

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is Logic
Programming?

• What, not how

• No mutable state

• Basis in formal logic

• = means =

• Line between input/output is blurry

-Major programming paradigm - a way of thinking about problems
-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state
-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
-Basis in formal logic. It’s the only major paradigm where “=” has the same meaning as it does in math.

What is this Course?

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What is this Course?

• Programming, programming, programming

• Thinking in a logic programming way

• Applying logic programming without a logic
programming language

• Little bit of theory later on

-Strong emphasis on programming and using logic programming languages
-I want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What this course isn’t

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

What this course isn’t

• Artificial intelligence

• Machine learning

• Deeply theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

What this course isn’t

• Artificial intelligence

• Machine learning

• Theoretical

-”Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.
-Machine learning (we won’t do any sort of statistics)
-You can spend a career on the theory behind this stuff. I know some, but it’s not my speciality.

Syllabus

Outline

• Abstract Syntax Trees and evaluation

• SAT and Semantic Tableau

Abstract Syntax Trees
and

Evaluation

Abstract Syntax Tree

• Abbreviation: AST

• Unambiguous tree-based representation of
a sentence in a language

• Very commonly used in compilers,
interpreters, and related software

-Generally we work with ASTs instead of Strings or any other code representation

(1 + 2) - 3 * 4

-Key parts: we need parentheses to direct that 1 + 2 happens first. We know that the 3 * 4 should happen after the part in parentheses from PEMDAS rules

(1 + 2) - 3 * 4

-

-Lowest priority thing ends up in the top of the tree

(1 + 2) - 3 * 4

-

+ *

-Next level of priority

(1 + 2) - 3 * 4

-

+ *

1 2 3 4

-Next level of priority

Exercise: First Side of
AST/Evaluation Sheet

-

+ *

1 2 3 4

Evaluation

-Key point: bubble-up values from the leaves
-This can be implemented in code via a recursive function starting from the root (code in a bit later)

-

+ *

1 2 3 4

Evaluation

-We start evaluation from the root...

-

+ *

1 2 3 4

Evaluation

-In order to evaluate the root, we need to evaluate the left subtree of the root (+)

-

+ *

1 2 3 4

Evaluation

-In order to evaluate +, we need to evaluate the left subtree (as with the root)

-

+ *

1 2 3 4

Evaluation

1

-For arithmetic, leaves are simply numbers
-Evaluating a leaf returns the number held within

-

+ *

2 3 4

Evaluation

1

1

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

-

+ *

2 3 4

Evaluation

1

1

-The left subtree of + has now been evaluated
-Now + needs the value of the right subtree

-

+ *

2 3 4

Evaluation

1

1

2

-As before, leaves just return the value held within

-

+ *

3 4

Evaluation

1

1

2

2

-Subtrees of + are now taken care of
-Now + has two values that it needs to work with...

-

+ *

3 4

Evaluation

1

1

2

2

3

-+ performs the actual addition

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now + is taken care of
-Going back to -, - now has the value of the left subtree, and it needs the value of the right subtree

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now we’re on *, which needs the value of the left subtree...

-

*

3 4

Evaluation

1

1

2

2

3

+

-Now we’re on *, which needs the value of the left subtree...

-

*

3 4

Evaluation

1

1

2

2

3

+
3

-Leaves again return the values held within...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-Left subtree done; * now needs the value of the right subtree...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

-Left subtree done; * now needs the value of the right subtree...

-

*

4

Evaluation

1

1

2

2

3

+
3

3

4

-Leaf returns value held within

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

-Leaf is done. * now has both operands it needs...

-

*

Evaluation

1

1

2

2

3

+
3

3

4

4

12

-* performs the multiplication and returns the value

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-The root - node now has both operands...

-

Evaluation

1

1

2

2

3

+
3

3

4

4

12

*

-9

-...and it returns the result of the subtraction

Exercise: Second Side of
AST/Evaluation Sheet

Evaluator Example:
arithmetic_evaluator.py

-Complete example online; we’ll live-code this in class

