
COMP 410
Summer 2024

Midterm Practice Exam #2

This is representative of the kinds of topics and kind of questions you may be asked on the

midterm. This practice exam, along with assignments 3-6 and the in-class handouts from week
3 and beyond, are intended to be comprehensive of everything on the exam. That is, I will try
not to ask anything that’s not somehow covered by those sources.

I will announce the exact cutoff for the handouts on Wednesday. While I won’t intentionally ask
questions from exam #1 material, some material naturally builds on earlier material (e.g.,
unification).

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you, as long as they

have handwritten notes on them. Both sides of both sheets can be used. To be clear, these

must be entirely handwritten.

More Recursion

1.) Write a procedure named allEqual which will succeed if all list elements are equal
to each other according to unification (=). You may introduce any helpers you wish.
Example calls are below:

?- allEqual([]).
true.
?- allEqual([1, 1, 1]).
true.
?- allEqual([1, 2, 3]).
false.
?- allEqual([1, X, 1]).
X = 1.
?- allEqual([A, B]).
A = B.
?- allEqual([X, 1, 2]).
false.

2.) Write a procedure named zip, which takes two lists of the same length, an output
list of the same length. The output list is a list of pair structures, where each pair
holds an element from each list, preserving order. If the lists are not the same length,
zip should fail, though you shouldn't need to explicitly check the length. Example calls
are below:

?- zip([], [], Output).
Output = [].
?- zip([hello], [goodbye], Output).
Output = [pair(hello, goodbye)].
?- zip([1, 2, 3], [a, b, c], Output).
Output = [pair(1, a), pair(2, b), pair(3, c)].
?- zip([A, B], [C, D], Output).
Output = [pair(A, C), pair(B, D)].
?- zip([foo], [bar, baz], Output).
false.
?- zip([foo, bar], [baz], Output).
false.

3.) We can represent a binary tree in Prolog using the following:
• leaf: At atom representing a leaf node
• internal(tree, value, tree): A structure recursively containing two trees and

some integer value
Write a procedure named sumTree that will compute the sum of all the elements in a
given binary tree. Leaf nodes are defined to have a sum of 0. Example queries are
shown below:

?- sumTree(leaf, Sum).
Sum = 0.
?- sumTree(internal(leaf, 5, leaf), Sum).
Sum = 5.
?- sumTree(internal(internal(leaf, 1, leaf),
 2,
 internal(leaf, 3, leaf)),
 Sum).
Sum = 6.

4.) Consider the following code, computing the length of a list:

len([], 0).
len([_|T], Len) :-
	 len(T, TLen),
	 Len is TLen + 1.

4.a) This procedure is not very efficient when it comes to memory. Why is it inefficient?

4.b) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

5.) Consider the following code which appends two lists together:

append([], List, List).
append([H|T], List, Result) :-
 append(T, List, Rest),
 Result = [H|Rest].

5.a) This procedure is not very efficient when it comes to memory. Why is it inefficient?

5.b) Rewrite this procedure to be more efficient with memory. You may introduce a
helper procedure if desired.

6.) Define a procedure named isPrime which will determine if a given input number is
prime. You may introduce any helpers you wish. Example queries follow:

?- isPrime(2).
true .
?- isPrime(3).
true .
?- isPrime(4).
false.

As a hint, the following Java-like code:

int x = y % z;

...is equivalent to the following Prolog code:

X is mod(Y, Z)

Test Case Generation

7.) Consider the following grammar-based definition of simplistic SQL queries:

7.a) Assume the only possible columns are named c1 and c2, and the only possible
tables are named t1 and t2. Write a generator of valid SQL query ASTs. An example
of a valid AST is select(c1, t1). Do not simply hardcode all possible ASTs.

7.b) Bounds or related mechanisms are not necessary for this problem, at least as
described. Why?

7.c) Name a change to this problem which would necessitate adding a bound or a
related mechanism, and explain why such a change would add this necessity.

8.) Consider the following grammar:

tree ::= `node(` tree `,` tree `)` | `leaf`

8.a.) Write a generator for `tree` below. It's ok if the generator gets "stuck" generating
similar values over and over again.

8.b.) Write a modified version of your prior generator, which takes an additional depth
bound, and will only generate values that are no deeper than this bound.

Logic Programming in Python (Depends on Wednesday)

9.) Consider the following Prolog procedure:

isName(alice).
isName(bob).
isName(janet).
isName(bill).

Write an equivalent generator function in Python, named isName. Each name should
be represented as a string. As a hint, isName should not take any parameters.

10.) Consider the following Prolog procedure:

naturalNumber(0).
naturalNumber(N) :-
 naturalNumber(NMinusOne),
 N is NMinusOne + 1.

Write an equivalent generator function in Python, named naturalNumber. As a hint,
naturalNumber should not take any parameters.

