

SAT

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

 Short for the Boolean satisfiability problem
 Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
$(x V \neg y) \Lambda (\neg x V z)$

SAT
 Short for the Boolean satisfiability problem
 Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
(x V ¬y) Λ (¬x V z)
Yes: x is true, z is true

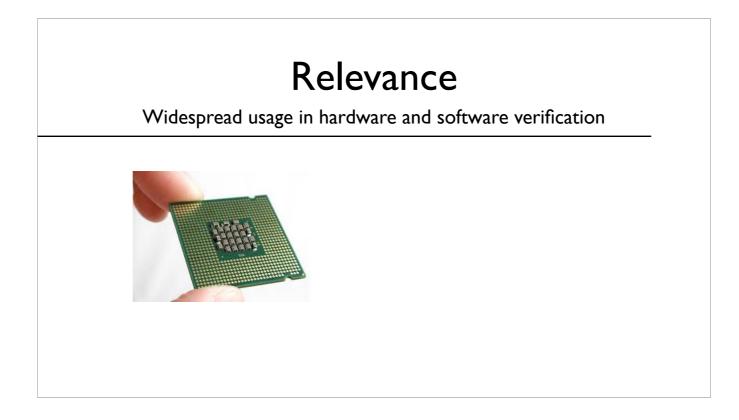
SAT
 Short for the Boolean satisfiability problem
 Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
$(x V \neg y) \Lambda (\neg x V z)$
Yes: x is true, z is true
(x ∧ ¬x)

SAT
 Short for the Boolean satisfiability problem
 Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?
$(x V \neg y) \Lambda (\neg x V z)$
Yes: x is true, z is true
$(x \land \neg x)$
No

Relevance

Widespread usage in hardware and software verification

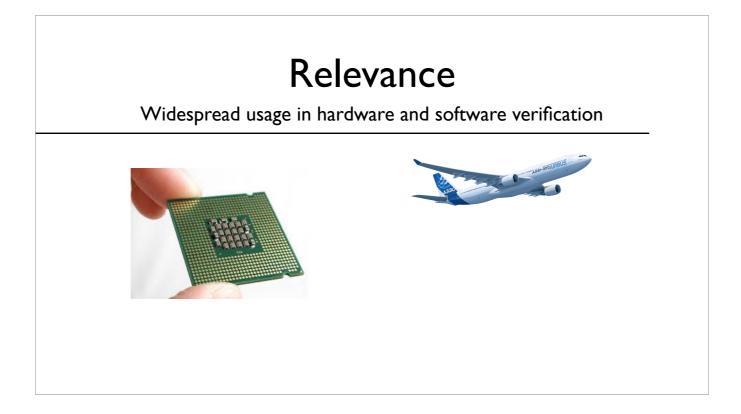
-Verification as in _proving_ the system does what we intend -Much stronger guarantees than testing -Testing can prove the existence of a bug (a failed test), whereas verification proves the absence of bugs (relative to the theorems proven)



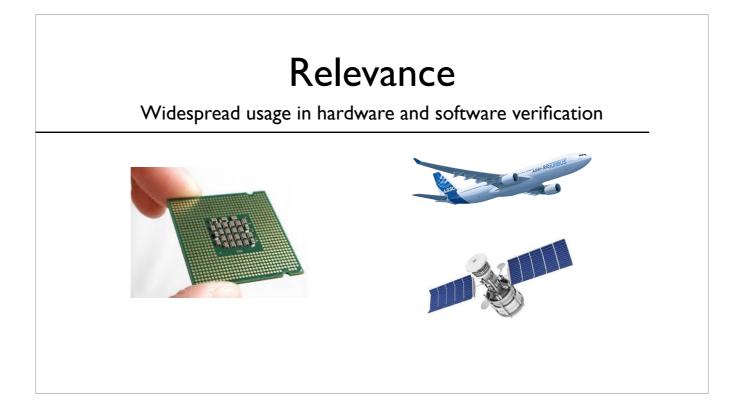
-Circuits can be represented as Boolean formulas

-Can basically phrase proofs as Circuit A BadThing. If unsatisfiable, then BadThing cannot occur. If satisfiable, then the solution gives the circumstance under which BadThing occurs.

-Many details omitted (entire careers are based on this stuff)



-(Likely) used by AirBus to verify that flight control software does the right thing -Lots of proprietary details so it's not 100% clear how this verification works, but SAT is still relevant to the problem



-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

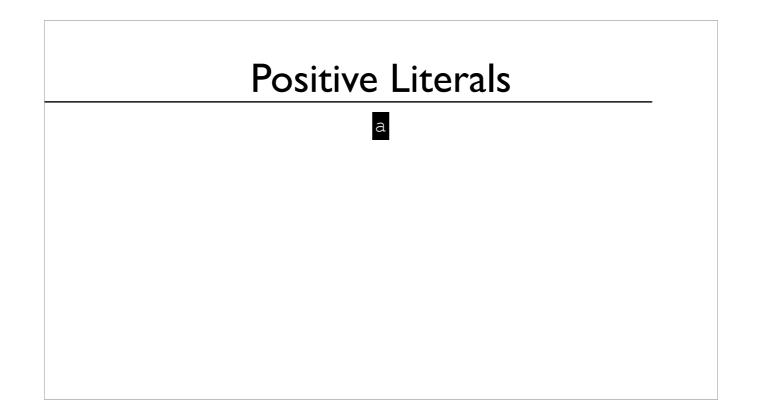
Relevance to Logic Programming

- Methods for solving SAT can be used to execute logic programs
- Logic programming can be phrased as SAT with some additional stuff

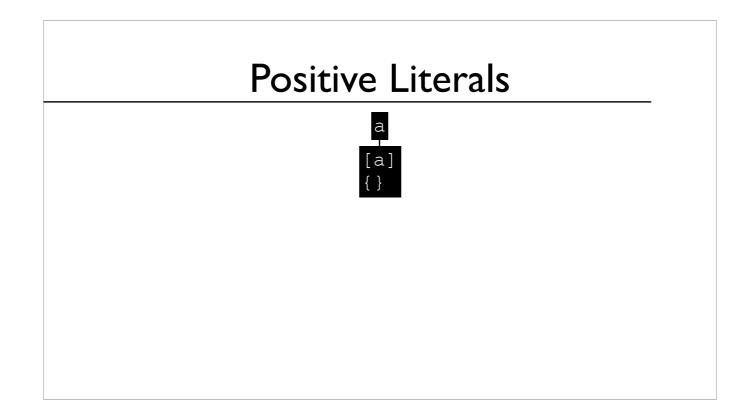
Semantic Tableau One method for solving SAT instances Basic idea: iterate over the formula

- Basic idea. Itel ace over the formula
- Maintain subformulas that must be true
- Learn which variables must be true/false
- Stop at conflicts (unsatisfiable), or when no subformulas remain (have solution)

-There are many methods to this

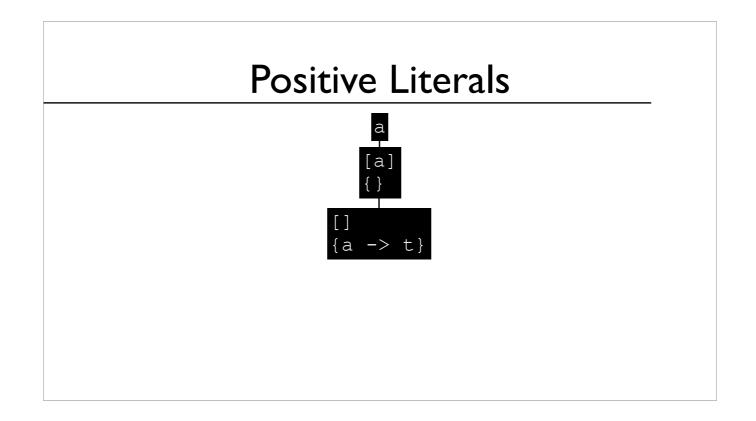


-As in, the input formula is simply "a"



-One subformula must be true: a

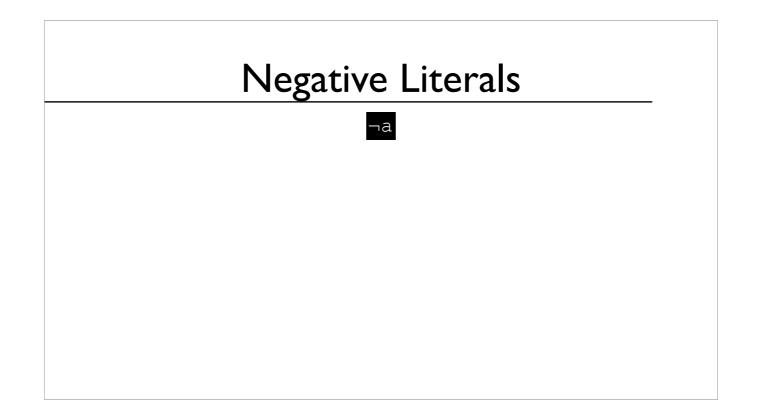
-Initially, we don't know what any variables must map to



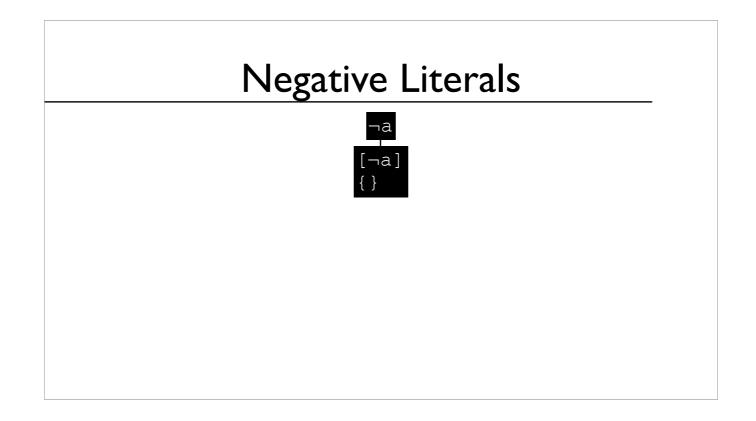
-For formula "a" to be true, it must be the case that a is true



-No subformulas remain, so we are done. The satisfying solution is that a must be true.

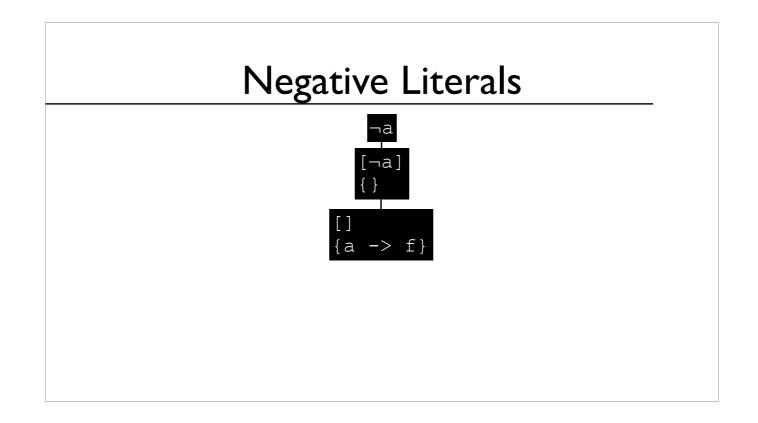


-As in, the input formula is simply " \neg a"

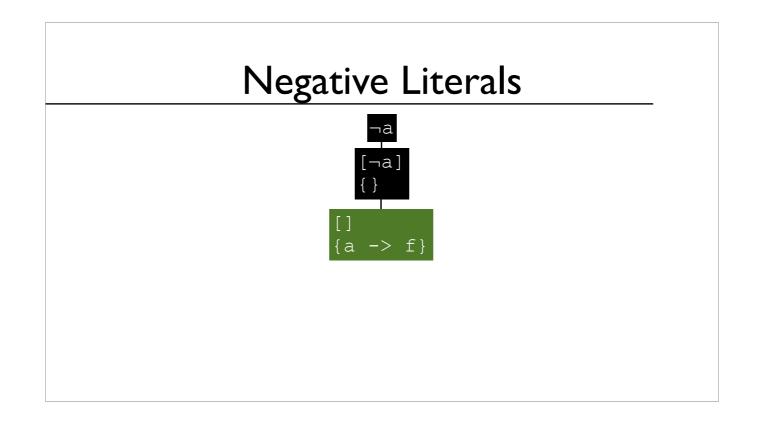


-One subformula must be true: $\neg a$

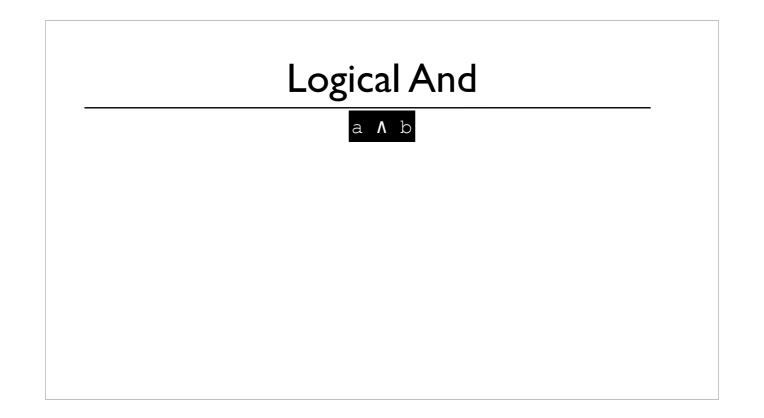
-Initially, we don't know what any variables must map to

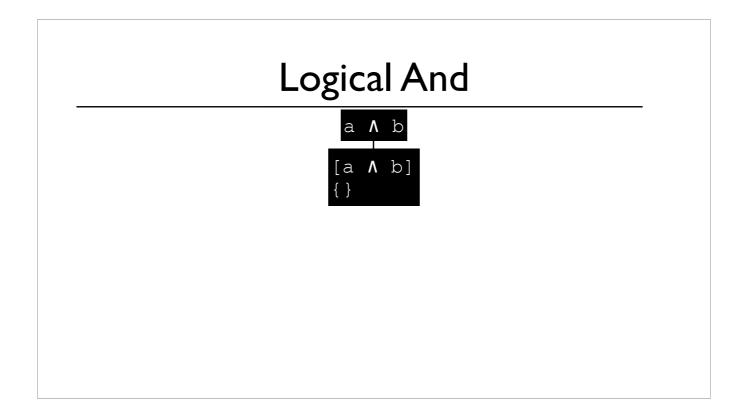


-For subformula " \neg a" to be true, it must be the case that a is false



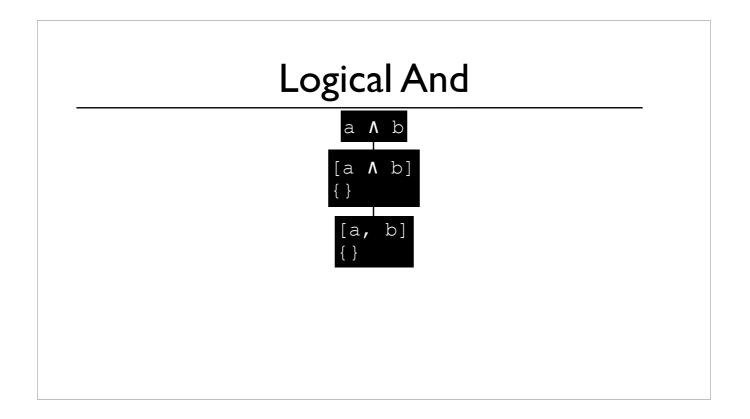
-No subformulas remain, so we are done. The satisfying solution is that "a" must be false.



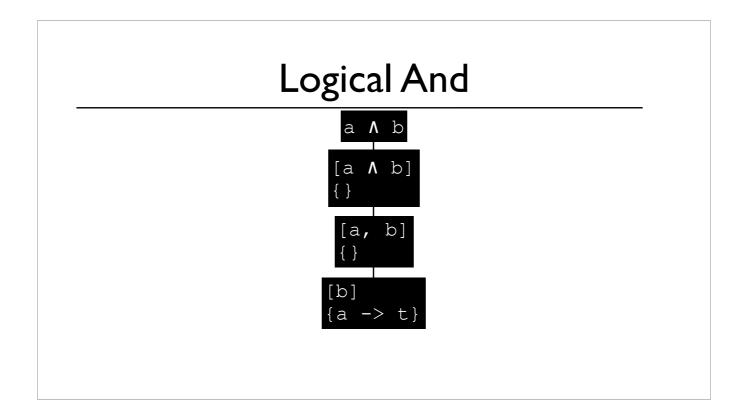


-Initially, one subformula must be true: $a\,\wedge\,b$

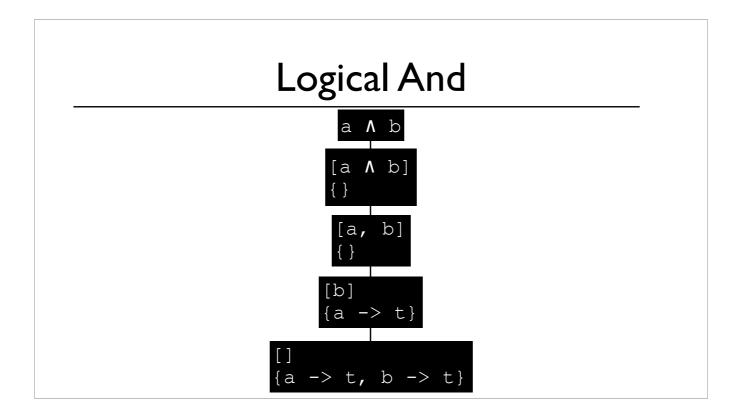
-Initially, we don't know what any variable must map to



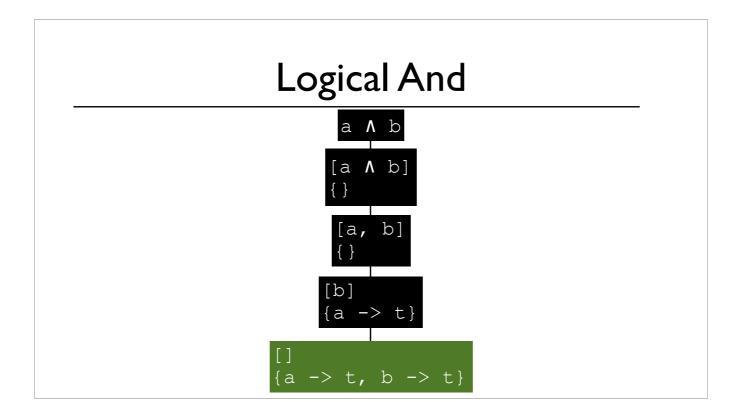
-For a ${\scriptscriptstyle \wedge}$ b to be true, subformulas a and b must both be true



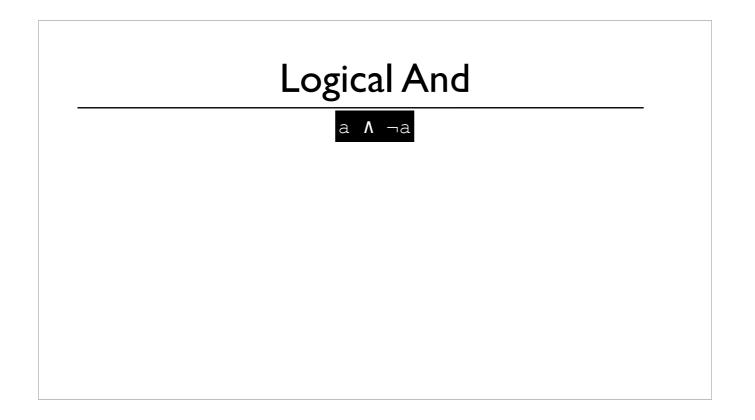
-From the positive literal case, for formula a to be true, variable a must be true



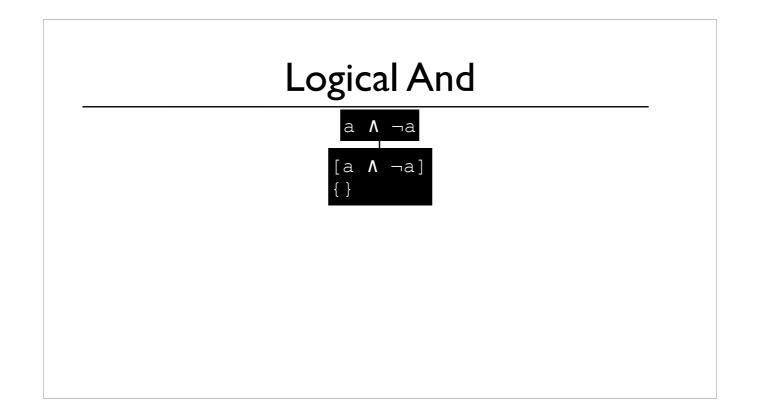
-From the positive literal case, for formula b to be true, variable b must be true

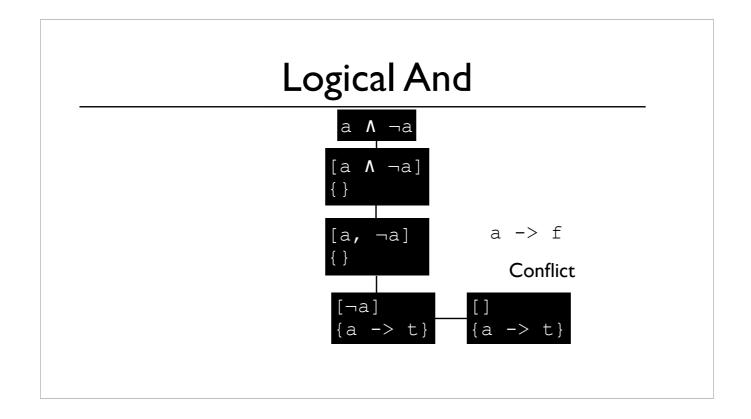


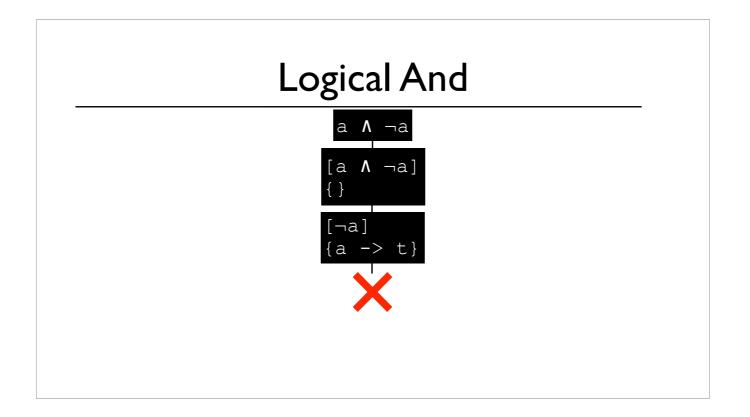
-No subformulas remain, so we are done with the solution that both a and b must be true



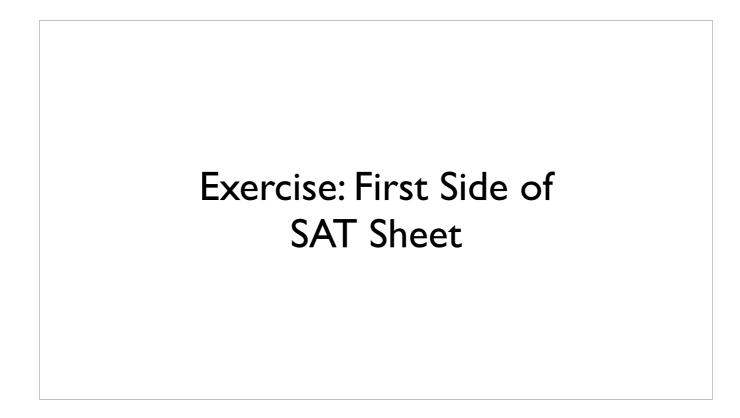
-Alternative example, showing a conflict

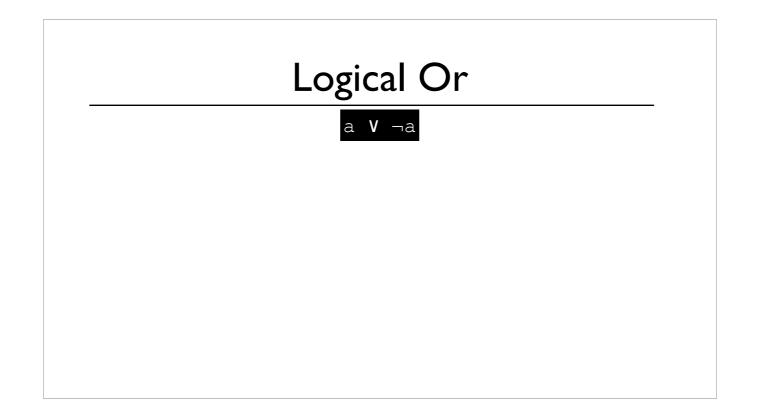


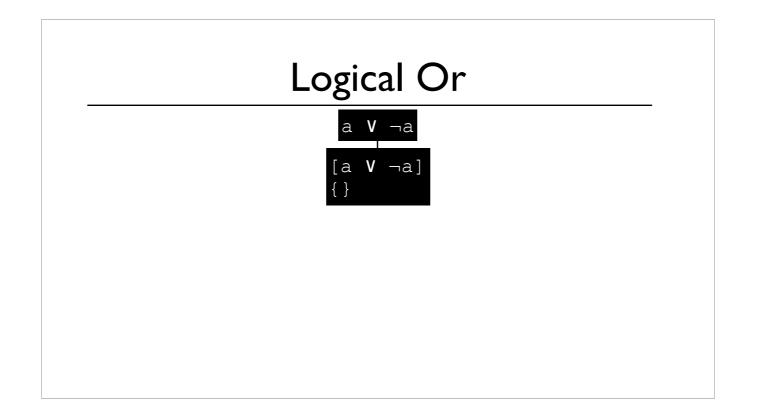


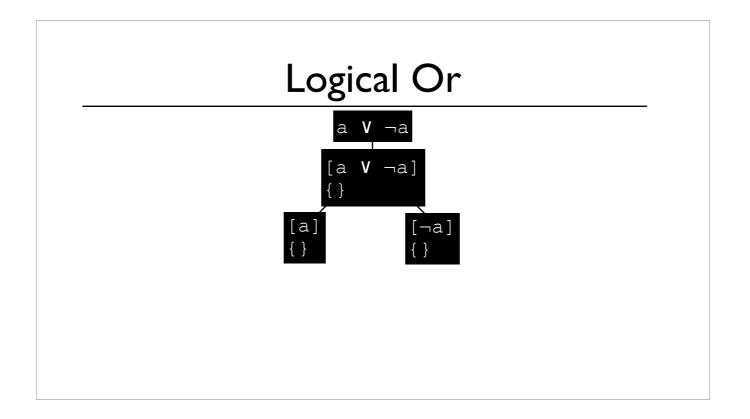


-Now we have a problem: for formula $\neg a$ to be true, it must be the case that variable a is false -We've already recorded that variable a must be true, which is the opposite of what we expect. -As such, we have a conflict – this formula is unsatisfiable

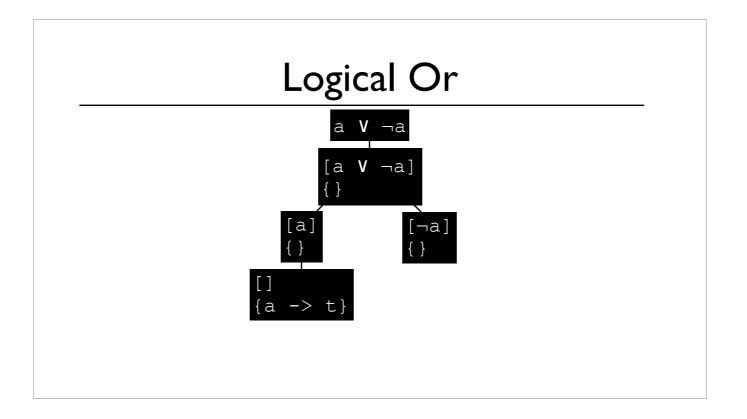




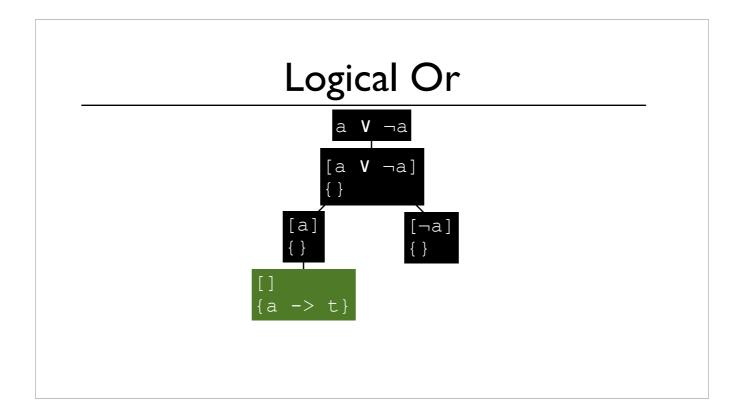




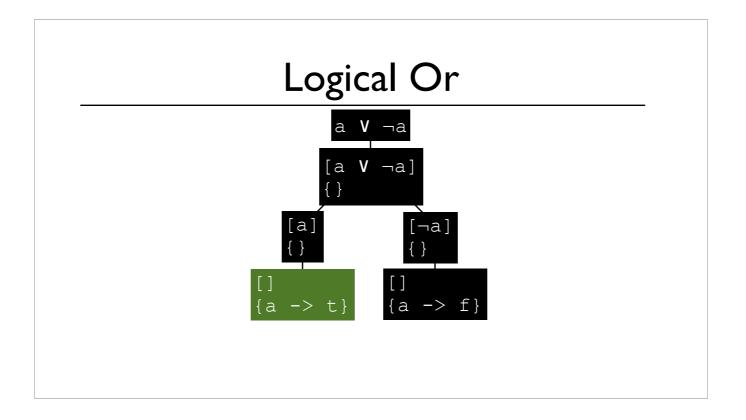
-World splits on or: in one world we pick the left subformula, and in another we pick the right



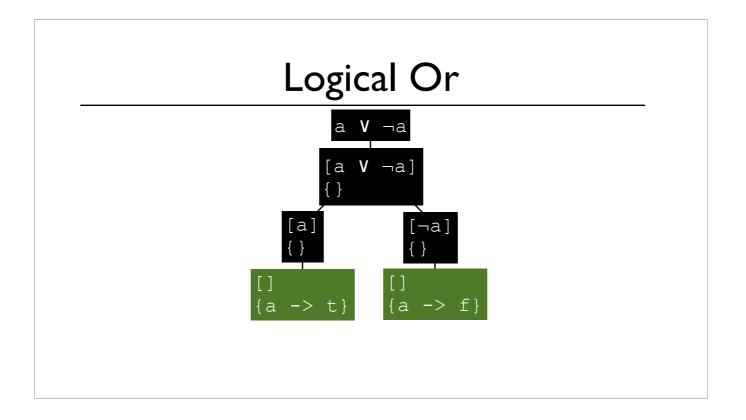
-World splits on or: in one world we pick the left subformula, and in another we pick the right



-World splits on or: in one world we pick the left subformula, and in another we pick the right



-World splits on or: in one world we pick the left subformula, and in another we pick the right



-World splits on or: in one world we pick the left subformula, and in another we pick the right

