
Language Design Proposal: pOOP

Student Name(s): Kyle Dewey
Language Name: pOOP

Compiler Implementation Language and Reasoning: Java. I'm already familiar with
it, and I'm not planning to get into optimizations. Learning a new language is an
unnecessary risk.

Target Language: C

Language Description: (Pathetic) object-oriented programming. The goal is for me to
better understand how object-oriented programming languages work. I want to
implement a Java-like language with classes and subclasses. I'm intentionally picking C
because it is pretty low-level, but it's not so low-level that it will require me to spend a lot
of time understanding the target language.

Planned Restrictions: there is no way to reclaim allocated memory (either
automatically or manually), and no optimizations.

Abstract Syntax:

var is a variable
classname is the name of a class
methodname is the name of a method
str is a string
i is an integer
type ::= Int | Boolean | Void | Built-in types
 classname class type; includes Object and String
op ::= + | - | * | / Arithmetic operations
exp ::= var | str | i | Variables, strings, and integers are
 expressions
 this | Refers to my instance
 println(exp) | Prints something to the terminal
 exp op exp | Arithmetic operations
 exp.methodname(exp*) | Calls a method
 new classname(exp*) | Creates a new instance of a class
 (type)exp Casts an expression as a type
vardec ::= type var Variable declaration
stmt ::= vardec; | Variable declaration
 var = exp; | Assignment
 while (exp) stmt | while loops
 break; | break
 { stmt* } | block

 if (exp) stmt else stmt | if/else
 return exp; | return an expression
 return; return Void
access ::= public | private | protected
methoddef ::= access type methodname(vardec*) stmt
 vardecs are comma-separated
instancedec ::= access vardec; instance variable declaration
classdef ::= class classname extends classname {
 instancedec*
 constructor(vardec*) stmt vardecs are comma-sep
 methoddef*
 }
program ::= classdef* exp exp is entry point

Computation Abstraction Non-Trivial Feature: Objects + methods with class-based
inheritance.

Non-Trivial Feature #2: Subtyping

Non-Trivial Feature #3: Static access modifier checking

Work Planned for Custom Milestone: Access modifier checking. Until that point,
everything is implicitly considered public.

