
COMP 430: Language Design and Compilers
Spring 2019

Instructor: Kyle Dewey (kyle.dewey@csun.edu)
Course Web Page: https://kyledewey.github.io/comp430-spring19/
Piazza Web Page: http://piazza.com/csun/spring2019/comp430
Office: JD 4427, Extension 4316 (not yet connected)

Course Description (From the Catalog)
Examination of the issues involved in the design and subsequent implementation of
programming languages. Considerations of implementation difficulties, including
various features in a programming language. Tools and techniques to facilitate both the
processing of programming languages and the building of programming processors.

Learning Objectives
Successful students will be able to:
• Design a programming language with:

• Concrete and abstract syntax
• Statically-checked types
• Expressions
• Subroutines
• Mechanisms for computation abstraction

• Implement a compiler for the designed language, complete with:
• A parser
• A typechecker / static semantic analyzer
• A code generator

Course Motivation
A common question with compilers courses: When am I ever going to need to
implement a compiler? I'll answer that upfront: probably never. However, consider
some related questions:
• When am I going to need to reuse my own code?: All the time.
• When will I need to understand how a language works?: All the time.
• When will I need to work in a team?: All the time.
• When will I need to understand why a language was designed in a certain way?: At

least as often as you evaluate new programming languages. Languages rise and fall
frequently, and it's important to know what's worth your time and what isn't.

In this class, you will incrementally build on your own code, starting likely from scratch.
You will live with your coding decisions (good or bad), and will likely have to revisit them.
You'll gain a better understanding of how languages work, and further understand what
is involved with language design. Perhaps most importantly, you'll learn that languages
aren't magic: you can implement your own, and they are surprisingly straightforward
once you understand the basics.

mailto:kyle.dewey@csun.edu
https://kyledewey.github.io/comp430-spring19/
http://piazza.com/csun/spring2019/comp430

What this Course Is and Is Not
This is a project-based, implementation-oriented course. Our focus will be on modern
compiler development. Grading is based on a series of assignments which will allow
you to incrementally implement your compiler. While these assignments will accomplish
the same high-level tasks, exactly what these assignments are depends on your
particular language (i.e., the assignment implementing typechecking will differ for Teams
A and B, since both implement different languages).

Because this is a project-based course, there are no exams, though I am
planning to use the final exam slot for team presentations. Your code will serve as a
demonstration of understanding class concepts. Additionally, since the focus is on
modern compilers, I'm intentionally not planning to cover certain topics in-depth,
namely:
• Efficient parsing (e.g., LL, LR, flex, bison, etc.). We won't need very efficient parsers

for what we plan to do. Moreover, it's not uncommon for modern compilers to forego
these things entirely; many of these algorithms and tools were developed at a time
when memory was scarce, but this is no longer true. From my own experience, I've
been implementing programming languages in various capacities for the past seven
years, and I've never needed to reach for any of this.

• Very low-level concerns like register allocation or machine-specific optimizations. It's
rare nowadays to compile directly to machine code, given existing backends like
LLVM and the JVM. Additionally, these topics are completely irrelevant if everyone
selects high-level compilation targets for their projects.

Textbook
No textbooks are required. That said, the following books may be of interest to you:
• Programming Language Pragmatics, by Michael Scott. Discusses a variety of

programming language features from a variety of paradigms, and certain key
interactions. Good for language design, though light on compilation.

• Compilers: Principles, Techniques, and Tools, by Alfred Aho, Monica Lam, Ravi Sethi,
and Jeffery Ullman. AKA the "Dragon Book" (there is a dragon on the cover). Class,
commonly-used textbook, which discusses low-level compiler details. Heavy focus on
parsing, and it's better-suited as a reference than an introduction.

• Modern Compiler Implementation in Java/ML/C (these are each separate books), by
Andrew Appel. Good introduction to compilers, with lots of example code. Not very
general.

• Engineering a Compiler, by Keith Cooper and Linda Torczon. Great resource on
optimizations and low-level concerns. Not a gentle introduction to compilers, and
limited information about things like types.

• Types and Programming Languages, by Benjamin Pierce. Specifically about
typechecking and type theory, specifically as it relates to a number of common
programming language features. Highly specialized and math-heavy; can be
intimidating.

Grading
All graded components somehow tie to the project. These are below:

The components with the initial/final split likely look a little strange; the reasoning for this
split follows. Ideally, for each one of these components (the lexer, the parser, etc.), you
will turn it in on time, it will be completely correct, and it will never need to be revisited.

Component Percentage

Language Design Proposal 5%

Lexer - Initial 1.5%

Parser - Initial 2.5%

Typechecker - Initial 8%

Basic Expression Translation -
Initial

8%

Subroutines/Control
Structures Translation - Initial

6%

Abstraction of Computations
Translation - Initial

9%

Project-Specific Custom
Milestone - Initial

5%

Language User
Documentation

6%

Bug Hunt 5%

Presentation 4%

Lexer - Final 1.5%

Parser - Final 2.5%

Typechecker - Final 8%

Basic Expression Translation -
Final

8%

Subroutines/Control
Structures Translation - Final

6%

Abstraction of Computations
Translation - Final

9%

Project-Specific Custom
Milestone - Final

5%

However, this are all unrealistic assumptions. As such, each component will be
evaluated twice:
1. At the specific component deadline. This is primarily to ensure steady progress is

being made on the project.
2. At the end-of-class overall project deadline. This is primarily to ensure that any

issues revealed at the first deadline were fixed, and that new bugs haven't crept
in.

If a component is submitted late, the late penalty will only be applied to the first
deadline, as opposed to the end-of-class overall deadline.

Plus/minus grading is used, according to the scale below:

Special Note on Testing and Code Cleanliness
As seen in the previous section, there are a LOT of components for me to grade. This
grading difficulty is multiplicative because each team's project is different, so I cannot
easily apply a one-size-fits-all strategy. As such, it is your responsibility to convince
me that your code works. If you have a bunch of good unit tests in your code, this will
likely convince me. If I need to read through your code to make the determination that
things work, clean code will help me come to this conclusion readily. However, if you
lack tests and your code is a mess, I likely won't be convinced.

If your score is >=... ...you will receive...

92.5 A

89.5 A-

86.5 B+

82.5 B

79.5 B-

76.5 C+

72.5 C

69.5 C-

66.5 D+

62.5 D

59.5 D-

0 F

Special Note About Teams
Considering the amount of work this class demands, it is highly recommended to form
teams. To ensure a fair distribution of work among teams, peer evaluations will be
used. Additionally, I will count the number of edits made to code per student per graded
component (we will use revision control via GitHub, making this easy to do). If your
number of edits is significantly lower than everyone else's without explanation, I will give
you (and only you, not your team), a 0 on the assignment. If you think a component is
completely implemented already, code can always be added in the form of tests.

Plagiarism and Academic Honesty
You are permitted to collaborate as much as you'd like; because of the nature of the
course, it's not really possible to take someone else's code as your own (i.e., Team A's
typechecker won't work for Team B). If you use code from elsewhere, you must cite it.
Any violations can result in a failing grade for the assignment, or potentially failing the
course for egregious cases. A report will also be made to the Dean of Academic Affairs.
Students who repeatedly violate this policy across multiple courses may be suspended
or even expelled.

Attendance
In the first week of class, I will take attendance. If you miss both sessions in the first
week and have not made alternative arrangements with me, you must drop the class, as
per University policy (http://catalog.csun.edu/policies/attendance-class-attendance/).
After the first week I will not take attendance, though you are strongly encouraged to
attend.

Communication
• Piazza is strongly preferred (allows for private messages, anonymous posting, and

class-wide public posting)
• Email is a fallback in case Piazza isn’t working
• Do not use Canvas’ messaging (very easy for me to miss messages)

Late Policy
Unless prior arrangements have been made, for each day a a component is late, it will
be deducted by 20%. Assignments that are submitted more than 5 days late will not
receive any credit.

Class Feedback
I am open to any questions / comments / concerns / complaints you have about the
class. If there is something relevant you want covered, I can push to make this happen.
I operate off of your feedback, and no feedback tells me “everything is ok”. This is the
first time I’m teaching this course, and it is the first time the course has had this
particular structure, so I’m anticipating that it won’t all be smooth sailing.

---Class Schedule is on Next Page---

http://catalog.csun.edu/policies/attendance-class-attendance/

Class Schedule and Component Due Dates (Subject to Change):
Items in bold are deadlines.

We
ek

Tuesday Thursday Friday

1 1/22: Introduction,
motivation, project
information

1/24: project information,
team formation, feature
survey

1/25:

2 1/29: feature survey,
grammars, lexing

1/31: grammars, lexing 2/1: Language Design
Proposal

3 2/5: lexing, ASTs 2/7: ASTs, parsing 2/8:

4 2/12: Lexer, parsing 2/14: parsing, type theory
basics

2/15:

5 2/19: Parser, type
theory basics,
typechecking

2/21: typechecking 2/22:

6 2/26: typechecking 2/28: compilation basics 3/1: Typechecker

7 3/5: compilation of
expresions

3/7: compilation of
expressions

3/8:

8 3/12: Basic
Expression
Translation,
compilation of control
structures

3/14: compilation of
control structures,
subroutines

3/15:

9 3/19: Spring Recess
(no class)

3/21: Spring Recess (no
class)

3/22: Spring Recess (no
class)

10 3/26: compilation of
subroutines

3/28: compilation of
methods, inheritance

3/29: Subroutines/
Control Structures
Translation

11 4/2: compilation of
methods, inheritance

4/4: compilation of higher-
order functions

4/5:

12 4/9: additional topics
as projects demand

4/11: additional topics as
projects demand

4/12: Abstraction of
Computations
Translation

13 4/16: additional topics
as projects demand

4/18: additional topics as
projects demand

4/19:

14 4/23: additional topics
as projects demand

4/25: additional topics as
projects demand

4/26: Project-Specific
Custom Milestone

15 4/30: additional topics
as projects demand

5/2: Language User
Documentation, team
consultation

5/3:

16 5/7: team consultation 5/9: team consultation 5/10: Bug Hunt

We
ek

Tuesday Thursday Friday

