
COMP 430
Spring 2020

Compiling in a Stack-Oriented Fashion

For this worksheet, we'll compile expressions and statements to a MIPS-like assembly
language. This assembly language has the following registers:

• $gp0, $gp1, $gp2: general purpose registers
• $sp: stack pointer: holds memory address of the top of the stack

In addition, this assembly language has the following instructions:

• li registerdest, value: load immediate: puts the given value into the given register (e.g.,
li $gp0, 5 puts 5 in $gp0)

• push registerinput: puts the 4-byte value in the given input register on top of the stack.
Also adds 4 to the value in $sp

• pop registerdest: puts the 4-byte value on top of the stack into the given destination
register. Also subtracts 4 from the value in $sp.

• add registerdest, registerinput1, registerinput2: adds the values in the two input registers,
putting the result in the destination register

• mult registerdest, registerinput1, registerinput2: multiplies the values in the two input
registers, putting the result in the destination register

• load registerdest, regsiterinput, offset: loads a value from memory into registerdest. The
address from which to load is specified in registerinput. offset is an offset from this
address. For example, load $gp0, $sp, -4 will load the value on top of the stack into
$gp0, without changing the value in $sp.

• store registerinput1, registerinput2, offset: stores the value in registerinput1 into memory.
The address to store at is specified in registerinput2. offset is an offset from this
address. For example, store $gp0, $sp, -4 will overwrite the value on top of the stack
with the value in $gp0, without changing the value in $sp.

With the above instructions in mind, translate the following expressions into assembly.
The result of any expression, including subexpressions, should end up on top of the
stack. The first one has been done for you.

1.) 1 + 2

li $gp0, 1 ; 1
push $gp0 ; 1
li $gp0, 2 ; 2
push $gp0 ; 2
pop $gp0 ; 1 + 2
pop $gp1 ; 1 + 2
add $gp2, $gp1, $gp0 ; 1 + 2
push $gp2 ; 1 + 2

2.) 123

3.) (1 + 2) * 3

Now translate each of the following statements to this language. Variables should get
pushed on the stack, but never popped off. You can assume that int is 4 bytes large.
The first one has been done for you.

4.)

int x = 5;
x = 6;

li $gp0, 5 ; 5
push $gp0 ; int x = 5;
li $gp0, 6 ; 6

push $gp0 ; 6
pop $gp0 ; x = 6
store $gp0, $sp, -4 ; x = 6

5.)

int x = 0;
int y = x + 1;

6.)

int x = 2;
int y = 4;
int z = x + y;

