
Typechecking Basic Expressions

Kyle Dewey

1 Introduction

This document covers the process of typechecking, that is, of determining if an input program is well-typed or ill-typed.
This assumes the reader is familiar with context-free grammars and abstract syntax trees. This is intended to be a quick
introduction for someone who needs to implement a compiler fast, as opposed to a full introduction to type theory.

1.1 Expressions and Statements

In most programming languages, programs are composed primarily of expressions and statements. Expressions produce a
value, whereas statements do not produce values. Usually, statements are useful for some sort of effect they have on the
code. For example, 1, 1 + 2, and x ∗ 5 are all expressions; these evaluate down to some value. In contrast, int x = 5; is
a statement; this has the effect of declaring a variable and initializing it with the value of 5, and does not produce a value
overall.

If this still isn’t clear, ask yourself: “can I assign this into a variable?” If yes, it’s an expression, if not, it’s a statement
(for our purposes, anyway). For example, dovetailing off of the previous examples, myVar = 1, myVar = 1 + 2, and myVar

= x * 5 all make sense, whereas myVar = int x = 5; does not.
Note that statements can contain expressions within them. Using the prior examples, 5 is an expression, but int x =

5; is a statement. Some languages also permit statements to be embedded in expressions. Exactly what is permissible is
defined by the language’s grammar; most languages will have production rules for expressions and statements.

1.2 Types

Most languages have the concept of types. Types define the kinds of values which are possible in the language, along with
the operations which are permissable on specific values. For example, consider the following Java code:

int x = 1;

int y = 2;

int z = x + y;

Java knows that x, y, and z are all variables of type int, and that + is a valid operation that can be performed with
two values of type int (specifically x and y in the example above). Moreover, the result of the + operation is int.

1.2.1 Statically-Typed Languages

Java is an example of a statically-typed language. This means that the types of all variables are known at compile time.
In statically-typed languages, programs with type errors (i.e., types are used in an inconsistent manner) are rejected (i.e.,
they fail to compile).

1.2.2 Dynamically-Typed Languages

Python (older variants) and JavaScript are examples of dynamically-typed languages. This means that types are associated
with values, not variables. This is far less restrictive than with statically-typed languages. For example, the following is
legal Python code:

x = 7

x = "foo"

1

With this program, while 7 is of type int and ‘‘foo’’ is of type String, x itself has no fixed type associated with it;
x’s type depends on whichever value it is holding at the moment. This program cannot be written in any statically-typed
language, because x’s type isn’t permitted to change in a statically-typed language.

Dynamically-typed languages are less restrictive than statically-typed languages, but this comes with a cost. For one,
performance-wise, generally the more information the compiler has at compile time, the better it can optimize your code.
For instance, if the compiler knows that x is an int, and int values are 64 bits on your platform, then it can allocate
exactly 32 bits for your variable. However, if the compiler doesn’t know the type of x, it will usually have to allocate
space to hold a ‘pointer to a ‘box”, where the box itself holds the value. This means we’d need 64 bits for the pointer
(assuming a 64 bit platform), which itself would point to a box. The box would need to be at least 64 bits large for the
integer, and is usually a bit larger. Moreover, we add an extra level of indirection for every access to x; to get the integer
out, we no longer just look up x, we also have to dereference x (two memory lookups as opposed to one).

Beyond performance, dynamically-typed languages can be overly permissive, to the point where they make life difficult.
If a type error is possible in a dynamically-typed program, then we must find just the right input that will trigger it. A
bug is present, but it’s hidden from us.

1.3 Static Typechecking

For our purposes, we will assume we’re working with a statically-typed language, and are typechecking the program at
compile time. The process of typechecking is usually phrased as a series of rules which explain how to derive what the
type of a given program is. For example, with 1 + 3, we would need (at least) two rules working in conjunction:

• The type of any integer (e.g., 1 and 3) is int

• The type of e1 + e2, where e1 is int and e2 is int, is int

Rules can be specified in natural languages (as English is mostly used above), but this tends to be problematic. Natural
languages tend to be both verbose and imprecise, leading to lengthy, unclear descriptions. Instead, it is usually preferable
to use inference rules, which can be seen as a way of writing an unambiguous specification using math. The next section
will introduce inference rules via example.

2 Complete Example

The remainder of this document will show typechecking rules for a relatively simple language. While this language is
simple, this will end up covering all the basics we’ll need to build things up with.

2.1 Language Used

Rather than start with an existing language, we’ll instead define our own language. Existing languages tend to be very
complex, so they don’t work well when we’re learning the basics.

We will define a statically-typed, expression-based language. By saying the language is expression-based, this means
that everything in the language is an expression, no exceptions. This makes life easier when defining typing rules (i.e., the
inference rules saying how to derive a program’s type). Before jumping to this language’s grammar, we’ll first see some
example programs, divided up by feature.

2.1.1 Booleans

Our language supports booleans. Specifically, true is a program that returns the boolean value true, false is a program
that returns the boolean value false, and the && operation returns the boolean conjunction of two boolean subexpressions.
For example, each one of the following lines is a complete program:

true

false

true && false

true && (false && true)

Boolean expressions have type bool; each of the above programs is of type bool.

2

2.1.2 Integer Arithmetic

Our language supports integer arithmetic. This includes all possible integers (e.g., 1, 42, 118) as expressions which
evaluate themselves, as well as the + and < operations with their usual meanings. For example, each one of the following
lines is a complete program:

47

8 + 2

1 + 2 + 3

1 + (2 + 3)

(7 + 8) < 27

Integer expressions have type int; each of the above programs is of type int.

2.1.3 Variables and Assignment

The last key feature is variables and variable assignment. Variables can be declared using let, as shown below:

let x: int = 7 in

x + x

Note that the entire above program is a single expression; by making this one expression, we have no need to separately
introduce statements. In the above program, let specifically does the following, in order:

• Declares the new variable x to be of type int.

• Initializes x to hold 7.

• Executes x + x, where x is in scope from the prior part.

With all this in mind, the above program evaluates to 14.
Assignment looks similar to let. For assignment to work, it needs a variable to already be in scope. This is shown in

the program below:

let x: int = 8 in

assign x = 9 in

x

The above program does the following, in order:

• Declares x to be of type int, and initializes x to 8

• Assigns 9 to x

• Evaluates to whatever the current value of x is

With the above in mind, the above program evaluates to 9.
Unlike let, assign does not introduce a new scope. This is because assign cannot introduce a new variable, only

modify an existing variable. We attempt to show this visually with whitespace above; the last x is at the same level as
assign, as opposed to being indented in.

2.1.4 Putting it All Together: Formal Abstract Syntax

Now that we have a sense of the language informally, we can define it a bit more formally. To that end, we will formally
define its abstract syntax via a BNF grammar. With an abstract syntax, we don’t care about specifics which are relevant
only to parsing (e.g., left recursion is ok, operator precedence is irrelevant, etc.); our goal with abstract syntax is to
define what legal abstract syntax trees look like, not the specific construction of abstract syntax trees from raw input
(i.e., parsing). Oftentimes, languages have both a concrete syntax and abstract syntax defined, where the concrete syntax
is specifically for the parser. Once the parser is through with its job, we can work with the much simpler abstract
syntax instead. In our case, since we are only considered with typechecking, we skip over the concrete syntax entirely;
typechecking follows parsing, so we can effectively skip over parsing-related concerns.

3

The abstract syntax for this language is below:

x ∈ Variable i ∈ Integer

τ ∈ Type ::= int | bool
e ∈ Exp ::= x | i | true | false | e1 && e2 | e1 + e2 | e1 < e2

| let x : τ = e1 in e2

| assign x = e1 in e2

These BNF rules correspond to the sort of informal examples we’ve seen already. Some points about the notation are
below:

• As usual, ::= introduces a new production rule. The specific notation before it (e.g., e ∈ Exp) defines the name of
the production rule (Exp), as well as a metavariable which stands-in for the production rule (e). The idea is that
we can use a metavariable to refer to the production again.

• The specific metavariable used says what kind of production we are referring to. For example, τ means we are
referring to a type (Type), and e says we are referring to an expression (Exp). Subscripts allow us to distinguish
between different expansions of a production; for example, if we have e1 and e2 in some context, this means that e1
and e2 are permitted to be two different expressions.

• For items defined without production rules (e.g., x ∈ Variable), we effectively leave what these components are
abstract, allowing the parser to fill in the details. From an implementation standpoint, these components usually
refer to individual tokens. They are effectively primitive values.

• τ and e are conventionally used as metavariables for types and expressions, respectively.

2.2 Type System Without Variables

Now that we have formally defined the language, we can formally define the language’s type system. A type system is a
set of rules which say exactly how to determine what the type of a given program is. We incrementally define the type
system below. We intentionally delay a discussion of how to handle variables to the next section; this strictly adds more
complexity.

2.2.1 Direct Integer and Boolean Values

We start our definition with integers and booleans which are directly specified. Specifically, we want to say:

• Any integer i is of type int

• true and false are each of type bool

We encode this information with the following rules:

i : int
(integer)

true : bool
(true)

false : bool
(false)

Each of these rules handles a different part of the above description. The part in parenthesis (e.g., (integer)) gives a
human-readable name to the rule; this is not strictly necessary for our purposes. Each use of : says that some expression
is of a certain type (e.g., i : int says that any integer i is of type int). The line over each rule is also important. Because
there is nothing written above this line, this says that each of these rules is an axiom; each is always true, no matter what.
We’ll see a case where something is written above the line shortly.

2.2.2 Integer and Boolean Operations

We now define the operations on integer and booleans. In plain English, we want to say:

• e1 && e2 is of type bool, as long as e1 and e2 are both of type bool

• e1 + e2 is of type int, as long as e1 and e2 are both of type int

4

• e1 < e2 is of type bool, as long as e1 and e2 are both of type int

Rules encoding the above information follow:

e1 : bool e2 : bool

e1 && e2 : bool
(and)

e1 : int e2 : int
e1 + e2 : int

(plus)
e1 : int e2 : int
e1 < e2 : bool

(less-than)

Note that the lines over the rules now have premises above them. These rules now apply only conditionally; they are
no longer axioms. For example, the rule handling e1 + e2 now only applies if e1 and e2 are both of type int.

2.2.3 Typechecking

We can apply these rules directly to typechecking, and even perform the process on paper. Specifically, we start with a
program, and then work through it from the bottom to the top. To illustrate this process, let’s consider the following
program:

(1 + 2) < 3

Looking at this program, we can immediately try to apply the less-than rule. This is shown below:

Note, however, we’re not done: we now need to check the premises on less-than. At this point, we can apply the plus
rule to handle 1 + 2, as shown below:

As for 1, 2, and 3, we can handle these all with integer, like so:

5

At this point, there is no further work to do; we have recursively checked all the necessary premises, and everything in
the image starts with a line. We now know that the type of this program is bool.

Sometimes, we cannot deduce the type of a program. This usually happens because an input program is ill-typed ;
that is, it has no associated type, and there is at least one type error somewhere. To see what happens in the event of an
ill-typed program, let’s try to apply this same process to the following ill-typed program:

(1 + 2) < true

This starts off the same as last time, up through the application of the integer rule:

However, this time around, we hit a problem, indicated by the spot in red. The true rule is the only rule that directly
applies to true, but true cannot be applied here because we expect the type to be int, not bool. That is, both the
expression itself and the type need to match up with the rule, otherwise the rule cannot be applied. Here we get stuck -
we need to apply something here (the tops of all premises need to have a line, so we’re not done yet), but there is nothing
we can apply. This sort of getting stuck happens with ill-typed programs; more formally, the expression (1 + 2) < true

has no type.

2.2.4 Code Glimpse

So far, the typing rules can be viewed as a way of collectively defining a Java function with the following signature:

public Type typeof(Exp e) throws IllTypedException

. . . where:

6

• Type is a class representing a type

• Exp is a class representing an expression

• IllTypedException is an exception thrown if we discover that e is ill-typed.

All the rules collectively define the implementation of typeof.

2.3 Type System With Variables

At this point, we’ve handled all the rules that do not involve variables. To add variables, we’ll need to keep track of which
variables are in scope, along with the types of those variables. The usual way to do this is by adding a type environment,
which maps variables in scopes to their corresponding types. Formally, we can write this as follows:

Γ ∈ TypeEnv = Variable → Type

The above definition states that metavariable Γ represents a mapping from Variable to Type. That is, if we give a Γ
a Variable, then it will give us back a Type. That said, Γ will only give us back a type if there is such a variable in the
domain of Γ.

To make this more concrete, we will show a modified version of typeof as a Java signature which operates with a Γ:

public Type typeof(Exp e, Map<Variable, Type> gamma) throws IllTypedException

As shown, the type environment is literally just a plain old map data structure (or dictionary, if you prefer), where the
keys are variables and the values are types. We now pass the type environment to typeof, along with the expression.

There is, however, one slight distinction between Γ and a Java map: Γ is an immutable map, whereas Map is generally
mutable. The difference lies in what happens when we add a new key/value pair to the map. In the math, adding a new
key/value pair returns a new map, which is the old map with the new key/value pair. The original map is unchanged. In
contrast, in Java, adding a new key/value pair generally modifies the original map. For what it’s worth, many languages
have libraries supporting the same sort of immutable data structures in code, it’s just that Java doesn’t have this out of
the box.

Towards handling variables, we’ll need to update our rules to pass along Γ. We do this below, modifying the same
rules we’ve seen so far:

Γ ` i : int
(integer)

Γ ` true : bool
(true)

Γ ` false : bool
(false)

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
(and)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(plus)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 < e2 : bool
(less-than)

Let’s start discussion of these rules with integer. The notation Γ ` i : int says that the input type environment is Γ
and the input expression is i. ` acts as a separator of the type environment and expression inputs, just like : separates
the input expression from the output type. Moving our discussion onto and, we can see that each recursive use of our
typing rules similarly needs to have a type environment passed along as a parameter; that is, typechecking e1 and e2 now
need Γ as a parameter.

Note that none of these rules manipulate Γ directly; they merely take Γ and pass it along. Considering our language,
this should make sense; none of these rules directly involve variables, and Γ is only needed when working with variables.
As such, we expect that these rules not to touch Γ.

With that, let’s introduce the rules that do touch Γ, starting with variables:

x ∈ dom(Γ) τ = Γ[x]

Γ ` x : τ
(var)

The notation x ∈ dom(Γ) checks if x is in the domain (dom) of Γ (i.e., x is contained in the type environment). If not, the
var rule does not apply. The notation Γ[x] looks up the key associated with x in Γ. The result of this lookup is bound
to metavariable τ . In this context, τ is some type, and we are permitted to introduce as many metavariables as we wish.
We end up saying that the type of x must be whatever τ is.

In plain English, the above rule:

• Checks to see if x is in the type environment (in scope). If not, then this rule doesn’t apply, and the program will
be considered ill-typed.

7

• Returns whatever type is associated with x in Γ, performing a map lookup to check this.

From here, we introduce rules handling let and assign, shown below:

Γ ` e1 : τ1 Γ[x 7→ τ1] ` e2 : τ2
Γ ` let x : τ1 = e1 in e2 : τ2

(let)

x ∈ dom(Γ) τ1 = Γ[x]
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` assign x = e1 in e2 : τ2
(assign)

Let’s first look at let. The premises of let say the following:

• Γ ` e1 : τ1 states that e1 must be of type τ1 underneath Γ. Notably, τ1 must be the same type as the user annotated
x to be in the program.

• The notation Γ[x 7→ τ1] adds a key/value pair to the map. Specifically, x is the key, and τ1 is the value. If x is already
a key in Γ, then this will effectively overwrite x’s current value with τ1 (that is, the returned type environment will
map x to τ1, instead of whatever x previously mapped to).

• With the prior point in mind, Γ[x 7→ τ1] ` e2 : τ2 states to put x in scope, associate it with type τ1, and determine
the type of e2. The type of e2 is bound to metavariable τ2.

• Finally, the type of a whole let expression is τ2, the type of e2 with x in scope.

Given what we know so far, assign should be straightforward. This specifically states that:

• Whatever variable being assigned to needs to already be in scope (x ∈ dom(Γ))

• The type of the value we assign to x (e1) must be the same type as x (τ1 = Γ[x] and Γ ` e1 : τ1)

• The type of the overall assignment is whatever the type of e2 is (τ2)

3 All in One Place

We previously said that the advantage of this sort of mathematical formalism is conciseness and clarity. To illustrate this,
the meat of everything we’ve discussed is repeated below, without the corresponding explanations. All the explanations
are entirely redundant with this; in a formal setting, only the following needs to be shown.

3.1 Abstract Syntax

x ∈ Variable i ∈ Integer

τ ∈ Type ::= int | bool
e ∈ Exp ::= x | i | true | false | e1 && e2 | e1 + e2 | e1 < e2

| let x : τ = e1 in e2

| assign x = e1 in e2

3.2 Type System

Γ ∈ TypeEnv = Variable → Type

Γ ` i : int
(integer)

Γ ` true : bool
(true)

Γ ` false : bool
(false)

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
(and)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(plus)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 < e2 : bool
(less-than)

x ∈ dom(Γ) τ = Γ[x]

Γ ` x : τ
(var)

Γ ` e1 : τ1 Γ[x 7→ τ1] ` e2 : τ2
Γ ` let x : τ1 = e1 in e2 : τ2

(let)

x ∈ dom(Γ) τ1 = Γ[x]
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` assign x = e1 in e2 : τ2
(assign)

8

