
Expressions and Statements

Kyle Dewey

1 Introduction

The previous handout considered a language which consisted only of expressions, no statements. In this handout, we use
fundamentally the same language, but use statements instead of expressions for let and assign.

1.1 Language Used

We’ll first define the abstract syntax for our language, shown below:

x ∈ Variable i ∈ Integer

τ ∈ Type ::= int | bool
e ∈ Exp ::= x | i | true | false | e1 && e2 | e1 + e2 | e1 < e2

s ∈ Stmt ::= let x : τ = e | x = e

p ∈ Program ::= s | s p

Compared to the last handout, there are two notable changes:

• let and assignment have been made into statements.

• A program is now explicitly defined as either a statement, or a statement followed by another program. Phrased
more simply, a program consists of one or more statements.

2 Type System

Now that we have the syntax defined, we can define the language’s type system. Formerly, this entailed the definition of
a single set of rules which operated over the language’s expressions. However, since we now have both statements and
expressions, we need to define two sets of rules: one for expressions and one for statements. Both sets of rules will need
type environments (expressions have variable access, and all statements currently involve variables), so we’ll define that
first:

Γ ∈ TypeEnv = Variable → Type

Note this is the same type environment definition from last time; this is still a mapping of variables to types. From here,
we define the rules for expressions, statements, and programs in the subsections below.

2.1 Rules for Expressions

The rules for expressions are identical to what we had before, though without let and assignment:

Γ ` i : int
(integer)

Γ ` true : bool
(true)

Γ ` false : bool
(false)

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
(and)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(plus)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 < e2 : bool
(less-than)

x ∈ dom(Γ) τ = Γ[x]

Γ ` x : τ
(var)

1

2.2 Rules for Statements

Statements are a bit trickier. By their nature, statements don’t give back values, so it doesn’t make sense for them to have
a return type. However, statements do have an effect: they add and interact with variables in scope. With this in mind,
while statements don’t have corresponding types, they instead produce new type environments. If we were to implement
this in Java, when typechecking statements, we’d have a type signature something like the following:

public Map<Variable, Type> typecheckStatement(Stmt s, Map<Variable, Type> env)

throws IllTypedException

In formal notation, we’ll have our statements give back type environments instead of types. To help keep things
unambiguous, we’ll use `s to indicate the typechecking of statements, whereas just ` refers to typechecking expressions.
With this in mind, the typing rules for statements are below:

Γ ` e : τ
Γ `s let x : τ = e : Γ[x 7→ τ]

(let)
x ∈ dom(Γ) τ = Γ[x] Γ ` e : τ

Γ `s x = e : Γ
(assign)

As shown, let adds a new variable to the type environment, making sure that the type of the variable (τ) is the same
as the type of the expression (e). Assignment doesn’t change the input type environment (Γ) at all. Instead, it makes
sure the variable being assigned to (x) is in scope, and makes sure the type of e is the same type as the variable in scope
(τ).

2.3 Rules for Programs

We can now define the typechecking rules for whole programs, where a program is one or more statements. The idea is
that we can chain along the type environment as we process statements. As such, typechecking whole programs is similar
to typechecking statements: we take an input type environment, and produce an output type environment. We’ll use `p
to help keep things unambiguous. This is shown below:

Γ1 `s s : Γ2

Γ1 `p s : Γ2
(prog-one)

Γ1 `s s : Γ2 Γ2 `p p : Γ3

Γ1 `p s p : Γ3
(prog-multi)

Note that the premise of prog-one uses the typechecking rules for statements instead of programs.

2

