
Language Design Proposal: ScalellScript

Student Name(s): Kyle Dewey
Language Name: ScalellScript

Compiler Implementation Language and Reasoning: Scala. I'm familiar with the
language already, and it provides pattern matching.

Target Language: JavaScript

Language Description: has a Scala-like syntax (https://www.scala-lang.org/), but
with a feature set that somewhat resembles Haskell (https://www.haskell.org/). Like
Scala, it has mutable state and eager evaluation. Like Haskell, it has algebraic data
types and typeclasses. The syntax used for typeclasses is based on Rust (https://
www.rust-lang.org/). Given the high-level target, this is primarily an exploration of
typechecking.

Planned Restrictions: there is no type inference, hindering practical usage. Moreover,
tuples are required all over the place, which is very inconvenient. This is intentional to
make the language itself simpler, at the cost of making its use more obnoxious. There
are no optimizations.

Syntax:

var is a variable
uname is a user-defined type name
cn us a user-defined constructor name
traitname is a user-defined trait (typeclass) name
typevar is a type variable
str is a string
i is an integer
type ::= String | Int | Unit | Built-in types
 Self | used in a trait definition to refer to the type
 an implementation is defined for
 type => type | Higher-order function type
 (type+) | Tuple type. Must contain at least two types
 uname[type*] | Generic user defined type. [] required
 typevar Type variables
op ::= + | - | * | / Arithmetic operations
exp ::= var | str | i | Variables, strings, and integers are
 expressions
 unit | Expression that creates a value of type Unit
 self | Expression that refers to the data that a trait
 implementation is for

https://www.scala-lang.org/
https://www.haskell.org/
https://www.rust-lang.org/
https://www.rust-lang.org/

 println(exp) | Prints something to the console
 exp op exp | Arithmetic operations
 (x: type) => e | Creates a higher-order function
 exp(exp) | Calls a higher-order function
 fn(exp) | Calls a toplevel function
 exp.fn(exp) | Calls a function defined in a typeclass
 { stmt* exp } | Block (statements and an expression)
 (exp+) | Creates a tuple. Must contain at least two
 expressions
 cn[type*] | Creates a user-defined type, with given
 generic type parameters
 e match { case* } Pattern matching
stmt ::= val x: type = exp | Immutable variable initialization
 var x: type = exp | Mutable variable initialization
 x = eep Mutable variable assignment
case ::= pattern => exp
pattern ::= x | Introduces a new variable
 _ | Matches everything
 cn(pattern) | Matches constructor
 (pattern*) Matches tuples
tintro ::= typevar | typevar : traitname Introduces a type
 variable, possibly with
 a constraint that it
 implements a typeclass
tdef ::= data un[tintro*] = cdef+ Algebraic datatype definition
cdef ::= cn(type) Constructor definition
fdef ::= def fn[tintro*](x: type): type = exp Function
 definition
trait ::= trait traitname { fdef* } Trait (typeclass) definition
toplevel ::= tdef | fdef | trait Toplevel definitions
program ::= toplevel* exp Expression is the entry point

Computation Abstraction Non-Trivial Feature: Typeclasses. Rust's OOP-like syntax
is used.

Non-Trivial Feature #2: Type variables / generics.

Non-Trivial Feature #3: Full pattern matching.

Work Planned for Custom Component: Typeclass implementation. Until the custom
component deadline, typeclasses will not be supported.

