
Language Design Proposal: ScalellScript

Student Name(s): Kyle Dewey
Language Name: ScalellScript

Compiler Implementation Language and Reasoning: Scala. I'm familiar with the
language already, and it provides pattern matching.

Target Language: JavaScript

Language Description: has a Scala-like syntax (https://www.scala-lang.org/), but
with a feature set that somewhat resembles Haskell (https://www.haskell.org/). Like
Scala, it has mutable state and eager evaluation. Like Haskell, it has algebraic data
types and typeclasses. The syntax used for typeclasses is based on Rust (https://
www.rust-lang.org/). Given the high-level target, this is primarily an exploration of
typechecking.

Key Features: Typeclasses, type variables / generics, algebraic data types, pattern
matching with exhaustivity checking, tuples, mutable and immutable variables, higher-
order functions.

Planned Restrictions: there is no type inference, hindering practical usage. There are
no optimizations.

Suggested Scoring and Justification:
• Lexer: 2%. Only support for reserved words, identifiers, and integers. No

comments.
• Parser: 5%. Uses S-expressions.
• Typechecker: 40%. Typeclasses, higher-order functions, tuples, generics, algebraic

data types, exhaustivity checking on pattern matching.
• Code Generator: 33%. Will not use higher-order functions in the translation, and

will instead compile these down to objects in JavaScript which behave like closures.
Typeclasses will pass around a JavaScript object that has these sorts of functions on
it.

Syntax:

var is a variable
algname is an algebraic datatype name
consname is a constructor name
traitname is a trait (typeclass) name
typevar is a type variable
str is a string
i is an integer

https://www.scala-lang.org/
https://www.haskell.org/
https://www.rust-lang.org/
https://www.rust-lang.org/

type ::= `String` | `Int` | `Unit` | Built-in types
 `Self` | used in trait definitions like Rust, referring
to the type the typeclass is implemented on
 `(` `=>` `(` type* `)` type `)` | Higher-order function
type, params first and return type last
 `(` `tuple` type type+ `)` | Tuples
 `(` `alg` algname type* `)` | Generic algebraic type
 typevar Type variable
op ::= `+` | `-` | `*` | `/` Arithmetic operations

param ::= `(` type var `)`
exp ::= var | str | i | Variables, strings, and integers are
 expressions
 `unit` | Expression that creates a value of type Unit
 `self` | Expression that refers to the data that a trait
 implementation is for
 `(` `println` exp `)` | Prints something to the console
 `(` op exp exp `)` | Arithmetic operations
 `(` `=>` `(` param* `)` exp `)` | Creates a higher-order
function
 `(` `call` exp exp* `)` | Calls a high-order function
 `(` `call` fn `(` type* `)` exp*) | Calls a toplevel
function, with given generic type parameters
 `(` `mcall` exp fn `(` type* `)` exp* `)` | Calls a
function defined in a typeclass, with given generic type
parameters
 `(` `block` stmt* exp `)` | Blocks
 `(` `tuple` exp exp+ `)` | Creates a tuple
 `(` `cons` consname `(` type* `)` exp* `)` | Creates a
user-defined type, with given generic type parameters
 `(` `match` exp case `)` Pattern matching
stmt ::= `(` `val` type var exp `)` | Immutable variable
initialization
 `(` `var` type var exp `)` | Mutable variable
initialization
 `(` `=` var exp `)` Mutable variable assignment
case ::= `(` `case` pattern exp `)`
pattern ::= x | Introduces a new variable
 `_` | Matches everything
 `(` `cons` consname pattern* `)` | Matches
constructor
 `(` `tuple` pattern pattern+ `)` Matches tuples
tintro ::= typevar | `(` `extends` typevar traitname)`)
 Introduces a type variable, possibly with a constraint that
it implements a typeclass
algdef ::= `(` `algdef` algname `(` tintro* `)` consdef+)`)

 Algebraic datatype definition
consdef ::= `(` `cons` consname type* `)` Constructor definition
funcdef ::= `(` `def` fn `(` tintro* `)` `(` param* `)`
 type exp `)` Function definition
trait ::= `(` `trait` traitname funcdef* `)` Trait (typeclass)
definition
toplevel ::= algdef | funcdef | trait Toplevel definitions
program ::= toplevel* exp Expression is the entry point

