
Language Design Proposal: pOOP

Student Name(s): Kyle Dewey
Language Name: pOOP

Compiler Implementation Language and Reasoning: Java. I'm already familiar with
it, and I'm not planning to get into optimizations. Learning a new language is an
unnecessary risk.

Target Language: C

Language Description: (Pathetic) object-oriented programming. The goal is for me to
better understand how object-oriented programming languages work. I want to
implement a Java-like language with classes and subclasses. I'm intentionally picking C
because it is pretty low-level, but it's not so low-level that it will require me to spend a lot
of time understanding the target language.

Key Features: Objects + methods with class-based inheritance, subtyping, access
modifier checking, runtime checking for casts, checking if a variable is initialized before
use, checking if void is used as a value, checking that a function returning non-void
always returns.

Planned Restrictions: there is no way to reclaim allocated memory (either
automatically or manually), and no optimizations.

Suggested Scoring and Justification:
• Lexer: 2%. Only support for reserved words, identifiers, and integers. No

comments.
• Parser: 5%. Uses S-expressions.
• Typechecker: 33%. Handles subtyping, access modifiers, and method overloading,

checking if a variable is initialized before use, checking if void is used as a value,
checking that a function returning non-void always returns.

• Code Generator: 40%. Has to handle inheritance, runtime casts, virtual tables (for
method calls).

Syntax:

var is a variable
classname is the name of a class
methodname is the name of a method
str is a string
i is an integer
type ::= `Int` | `Boolean` | `Void` | Built-in types
 classname class type; includes Object and String

op ::= `+` | `-` | `*` | `/` Arithmetic operations
exp ::= var | str | i | Variables, strings, and integers are
 expressions
 `this` | Refers to my instance
 `(` `println` exp `)` | Prints something to the terminal
 `(` op exp exp `)` | Arithmetic operations
 `(` `call` exp methodname exp* `)` | Calls a method
 `(` `new` classname exp* `)` | Creates a new object
 `(` `cast` type exp `)` Casts an expression as a type
vardec ::= `(` `vardec` type var `)` Variable declaration
stmt ::= vardec | Variable declaration
 `(` `=` var exp `)` | Assignment
 `(` `while` exp stmt* `)` | while loops
 `break` | break
 `(` `if` exp stmt [stmt] `)` | if with optional else
 `(` return [exp] `)` | return, possibly void
access ::= public | private | protected
methoddef ::= `(` `method` access type methodname
 `(` vardec* `)` stmt* `)`
instancedec ::= `(` vardec access type var `)`
constructor ::= `(` `init` `(` vardec* `)`
 [`(` `super` exp* `)`]
 stmt* `)`
classdef ::= `(` `class` classname [classname]
 `(` instancedec* `)`
 constructor
 methoddef* `)`
program ::= classdef* stmt+ stmt+ is the entry point

