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About Me

• My research:

• Novel programming language development, 
in collaboration with JPL

• Automated test case generation, 
particularly on testing compilers

• Fourth time teaching this course



About this Class

• Revamped: more flexibility in project 
features, value of project components 
negotiated by group, partially flipped 
classroom for lab time

• See something wrong?  Want something 
improved? Email me about it! 
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu


Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.



Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it 
relates to anything in reality.

• I can’t fix anything if I don’t know what’s 
wrong



Motivation



When will I implement a 
compiler?



When will I implement a 
compiler?
Probably never.



• When will I need to reuse my own code?

• When will I need to understand how a 
language works?

• When will I need to work on a team?

• When will I need to understand why a 
language was designed a certain way?



• When will I need to reuse my own code?

• When will I need to understand how a 
language works?

• When will I need to work on a team?

• When will I need to understand why a 
language was designed a certain way?

Basically always.
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Understanding 
Language Behavior

int i = 0; 
i = i++ + i++; 
    0  +   1 = 1 
// what is i? (Java) 
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Understanding 
Language Behavior

int i = 0; 
i = i++ + i++; 
// what is i? (Java) 
// what is i? (C)

The point: understanding compilers can aid language 
understanding.



Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork
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Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork



Project-Based

• Select from a series of pre-made project  
proposals with certain kinds of features

• Or maybe make your own

• Incrementally implement those features

• By the end, you'll have a compiler



Fair Warning

• This is a lot of work

• I will try to give you effectively lab time in 
class, when possible

• As we progress, lectures may get more 
specialized (depends on you)



Syllabus



Project Information



Birds-eye View
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Compiler
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(program in
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String
(program in
language B)
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Tokenizer
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Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Breaks input into 
smaller pieces 
(effectively words)

• Makes parser's job 
easier



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Combines "words" 
to form sentences

• AST: data structure 
encoding relevant 
program parts



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Checks for basic 
programming 
errors

• May quietly add 
information to AST



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Performs the actual 
translation

• Source of 
optimizations
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Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team 
development

• Tests can precede 
code

Define these with your team first.



Into the Lexer / 
Tokenizer



Basic Idea

• Break input into words, called "tokens"

• Every language has its own specific set of 
tokens



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}

if ( var("x") <

int(7) ) { var("y")

= true ; }

else { var("y") =

false ; }



Tokenization Handout



Livecoded Tokenizer


