
COMP 430 Lecture 1
Kyle Dewey

About Me

• My research:

• Novel programming language development,
in collaboration with JPL

• Automated test case generation,
particularly on testing compilers

• Fourth time teaching this course

About this Class

• Revamped: more flexibility in project
features, value of project components
negotiated by group, partially flipped
classroom for lab time

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

Motivation

When will I implement a
compiler?

When will I implement a
compiler?
Probably never.

• When will I need to reuse my own code?

• When will I need to understand how a
language works?

• When will I need to work on a team?

• When will I need to understand why a
language was designed a certain way?

• When will I need to reuse my own code?

• When will I need to understand how a
language works?

• When will I need to work on a team?

• When will I need to understand why a
language was designed a certain way?

Basically always.

Understanding
Language Behavior

Understanding
Language Behavior

int i = 0;
i = i++ + i++;
 0 + 1 = 1
// what is i? (Java)

Understanding
Language Behavior

int i = 0;
i = i++ + i++;
// what is i? (Java)
// what is i? (C)

Understanding
Language Behavior

int i = 0;
i = i++ + i++;
// what is i? (Java)
// what is i? (C)

The point: understanding compilers can aid language
understanding.

Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

Project-Based

• Select from a series of pre-made project
proposals with certain kinds of features

• Or maybe make your own

• Incrementally implement those features

• By the end, you'll have a compiler

Fair Warning

• This is a lot of work

• I will try to give you effectively lab time in
class, when possible

• As we progress, lectures may get more
specialized (depends on you)

Syllabus

Project Information

Birds-eye View

Compiler

Compiler
String

(program in
language A)

String
(program in
language B)

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Breaks input into
smaller pieces
(effectively words)

• Makes parser's job
easier

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Combines "words"
to form sentences

• AST: data structure
encoding relevant
program parts

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Checks for basic
programming
errors

• May quietly add
information to AST

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Performs the actual
translation

• Source of
optimizations

Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team
development

• Tests can precede
code

Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team
development

• Tests can precede
code

Define these with your team first.

Into the Lexer /
Tokenizer

Basic Idea

• Break input into words, called "tokens"

• Every language has its own specific set of
tokens

Example
if (x < 7) {
 y = true;
} else {
 y = false;
}

Example
if (x < 7) {
 y = true;
} else {
 y = false;
}

if (var("x") <

int(7)) { var("y")

= true ; }

else { var("y") =

false ; }

Tokenization Handout

Livecoded Tokenizer

