
COMP 430 Lecture 1
Kyle Dewey



About Me

• My research:

• Automated test case generation, 
particularly on testing compilers

• Fifth time teaching this course



About this Class

• See something wrong?  Want something 
improved? Email me about it! 
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu


Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this



Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it 
relates to anything in reality.

• I can’t fix anything if I don’t know what’s 
wrong

-I can actually do something about this!



Motivation



When will I implement a 
compiler?



When will I implement a 
compiler?
Probably never.



• When will I need to reuse my own code?

• When will I need to understand how a 
language works?

• When will I need to work on a team?

• When will I need to understand why a 
language was designed a certain way?



• When will I need to reuse my own code?

• When will I need to understand how a 
language works?

• When will I need to work on a team?

• When will I need to understand why a 
language was designed a certain way?

Basically always.

-Knowledge of why a language was designed a particular way gives you an appreciation for the features a language has, and can help you spot BS when 
someone advocates for a given language.



Understanding 
Language Behavior

-Towards motivating why compiler knowledge can help when it comes to understanding language behavior



Understanding 
Language Behavior

int i = 0; 
i = i++ + i++; 
// what is i? (Java) 

-Java: 1 (0++ returns 0 and increments i, then 1++ returns 1 and increments i, 0 + 1 = 1)



Understanding 
Language Behavior

int i = 0; 
i = i++ + i++; 
// what is i? (Java) 
// what is i? (C)

-Undefined behavior (your fault as the programmer)
-Reflects major differences between the design mindset of Java (a safe, predictable language) and C (a fast language which the compiler can optimize the 
hell out of)



Understanding 
Language Behavior

int i = 0; 
i = i++ + i++; 
// what is i? (Java) 
// what is i? (C)

The point: understanding compilers can aid language 
understanding.

-Undefined behavior (your fault as the programmer)



Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

-We don't get into LL, LR, bison, flex, etc.  If you know them, you can use them.  I don't see them often in practice.  These were originally developed 
because memory was scarce in the early days.
-I don't require you to compile to assembly.  You can compile to JavaScript for all I care, and this isn't so strange anymore.  In fact, compiling to assembly 
is now relatively strange (just use LLVM)



Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

-There is a lot of theory that goes into compilers, but my interest is more on the pragmatic side.
-Everything is about the compiler you're writing.



Course Design

• Emphasis on modern compilers

• Minimal parsing

• Minimal ultra low-level stuff

• It's about writing code

• It's about teamwork

-Yes, you have to work in teams.  But I'm going to put some mechanisms in place to keep people from leeching.  You're writing relatively large software, 
and this is done in teams.



Choose Your Own 
Adventure

• Choose from one of nine premade 
language design proposals; tweak as desired

• Alternatively, if you have prior experience: 
design your own language with certain 
kinds of features

• Incrementally implement those features

• By the end, you'll have a compiler



Fair Warning

• This is a lot of work

• I will try to give you effectively lab time in 
class, when possible

• As we progress, lectures may get more 
specialized (depends on you)



Syllabus



Project Information



Birds-eye View



Compiler

Compiler
String

(program in
language A)

String
(program in
language B)



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Breaks input into 
smaller pieces 
(effectively words)

• Makes parser's job 
easier

-For example, "return" has special meaning in most programs.  It makes sense to look at "return" as one unit, instead of the separate characters 'r', 'e', 't', 
'u', 'r', 'n'
-Errors here are usually treated as syntax errors; errors tend to be basic in nature



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Combines "words" 
to form sentences

• AST: data structure 
encoding relevant 
program parts

-Many program parts are irrelevant (e.g., comments and whitespace)
-Also handles operator precedence and parentheses
-All syntax errors are from the tokenizer or parser; most are from the parser



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Checks for basic 
programming 
errors

• May quietly add 
information to AST

-Performs an analysis of the code (and is sometimes called semantic analysis)
-The origin of type errors
-Depending on the language, it may add information to the AST about the types of the values in play (e.g., x + y could refer to integer division or double 
division in Java; the typechecker will disambiguate between them)
-Can range from relatively simple to being the most complex component, depending on the language (and especially the kinds of errors we want to 
prevent)



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Performs the actual 
translation

• Source of 
optimizations

-In practice, usually the most complex component (especially for low-level targets)
-Often divided into a middle-end and back-end; the middle-end performs target-independent optimizations, whereas the back-end performs target-
specific optimizations (the tokenizer, parser, and typechecker form the front-end)



Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team 
development

• Tests can precede 
code

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available



Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team 
development

• Tests can precede 
code

Define these with your team first.

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available
-If everyone agrees on the interface, it's possible to divide work without stepping on each other's toes.  Otherwise, it's a nightmare (based on observations 
from last time)



Into the Lexer / 
Tokenizer

-These terms mean the same thing



Basic Idea

• Break input into words, called "tokens"

• Every language has its own specific set of 
tokens



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}

if ( var("x") <

int(7) ) { var("y")

= true ; }

else { var("y") =

false ; }



Tokenization Handout



Livecoded Tokenizer


