
COMP 430:
Tokenization

Kyle Dewey

Birds-eye View

Compiler

Compiler
String

(program in
language A)

String
(program in
language B)

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Breaks input into
smaller pieces
(effectively words)

• Makes parser's job
easier

-For example, "return" has special meaning in most programs. It makes sense to look at "return" as one unit, instead of the separate characters 'r', 'e', 't',
'u', 'r', 'n'
-Errors here are usually treated as syntax errors; errors tend to be basic in nature

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Combines "words"
to form sentences

• AST: data structure
encoding relevant
program parts

-Many program parts are irrelevant (e.g., comments and whitespace)
-Also handles operator precedence and parentheses
-All syntax errors are from the tokenizer or parser; most are from the parser

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Checks for basic
programming
errors

• May quietly add
information to AST

-Performs an analysis of the code (and is sometimes called semantic analysis)
-The origin of type errors
-Depending on the language, it may add information to the AST about the types of the values in play (e.g., x + y could refer to integer division or double
division in Java; the typechecker will disambiguate between them)
-Can range from relatively simple to being the most complex component, depending on the language (and especially the kinds of errors we want to
prevent)

Compiler Architecture

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Performs the actual
translation

• Source of
optimizations

-In practice, usually the most complex component (especially for low-level targets)
-Often divided into a middle-end and back-end; the middle-end performs target-independent optimizations, whereas the back-end performs target-
specific optimizations (the tokenizer, parser, and typechecker form the front-end)

Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team
development

• Tests can precede
code

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available

Well-Defined Interfaces

Tokenizer

Parser

Typechecker

Code
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Helps team
development

• Tests can precede
code

Define these with your team first.

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available
-If everyone agrees on the interface, it's possible to divide work without stepping on each other's toes. Otherwise, it's a nightmare (based on observations
from last time)

Project Information

Into the Lexer /
Tokenizer

-These terms mean the same thing

Basic Idea

• Break input into words, called "tokens"

• Every language has its own specific set of
tokens

Example
if (x < 7) {
 y = true;
} else {
 y = false;
}

Example
if (x < 7) {
 y = true;
} else {
 y = false;
}

if (var("x") <

int(7)) { var("y")

= true ; }

else { var("y") =

false ; }

Tokenization Handout

Livecoded Tokenizer

