COMP 430:

Tokenization

Kyle Dewey

Birds-eye View

String

Compiler

String

(program in ——H@enpIlE@ —— (program in

language A)

language B)

Compiler Architecture

String (program)

Tokenizer

Abstract Syntax Tree (AST)

Typechecker
Annotated(?) AST

Code

Generator

String (equivalent program)

Compiler Architecture
N\ String (program)

Tokens

Abstract Syntax Tree (AST)

® Breaks input into
smaller pieces
(effectively words)

Typechecker
Annotated(?) AST

Code

Generator

® Makes parser's job
easier

String (equivalent program)

-For example, "return” has special meaning in most programs. It makes sense to look at "return" as one unit, instead of the separate characters 'r', ‘e, 't',

u, 'r', 'n
-Errors here are usually treated as syntax errors; errors tend to be basic in nature

Compiler Architecture

String (program)

Tokenizer

Abstract Syntax Tree (AST)

® Combines "words"

Typechecker
to form sentences

Annotated(?) AST

® AST: data structure Code
encoding relevant Generator
program parts

String (equivalent program)

-Many program parts are irrelevant (e.g., comments and whitespace)
-Also handles operator precedence and parentheses
-All syntax errors are from the tokenizer or parser; most are from the parser

Compiler Architecture

String (program)

Tokenizer

Abstract Syntax Tree (AST)

® Checks for basic

, Typechecker
programming Annotated(?) AST
errors
Code
® May quietly add Generator

information to AST

String (equivalent program)

-Performs an analysis of the code (and is sometimes called semantic analysis)

-The origin of type errors

-Depending on the language, it may add information to the AST about the types of the values in play (e.g., x + y could refer to integer division or double
division in Java; the typechecker will disambiguate between them)

-Can range from relatively simple to being the most complex component, depending on the language (and especially the kinds of errors we want to
prevent)

Compiler Architecture

String (program)

Tokenizer

Abstract Syntax Tree (AST)

® Performs the actual Typechecker
translation Annotated(?) AST
Code
® Source of Generator
optimizations

v
String (equivalent program)

-In practice, usually the most complex component (especially for low-level targets)
-Often divided into a middle-end and back-end; the middle-end performs target-independent optimizations, whereas the back-end performs target-

specific optimizations (the tokenizer, parser, and typechecker form the front-end)

Well-Defined Interfaces

String (program)

Tokenizer

Abstract Syntax Tree (AST)

® Helps team Typechecker
development

Annotated(?) AST

Code
® Tests can precede Generator

code

String (equivalent program)

-Or at least, well-definable
—-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)

-For each component, it should be possible to at least formulate tests without having that component available

Well-Defined Interfaces

String (program)

_ Define these with your team first.
Tokenizer

Abstract Syntax Tree (AST)

® Helps team Typechecker

development Annotated(?) AST

Code
® Tests can precede Generator

code

String (equivalent program)

-Or at least, well-definable
—-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)

-For each component, it should be possible to at least formulate tests without having that component available
-If everyone agrees on the interface, it's possible to divide work without stepping on each other's toes. Otherwise, it's a nightmare (based on observations

from last time)

Project Information

-These terms mean the same thing

Into the Lexer /
Tokenizer

Basic ldea

® Break input into words, called "tokens"

® Every language has its own specific set of
tokens

Example

1f (x < 7) |
y = true;
} else {
y = false;

y = true;
} else {
y = false;
}
if (var ("x") <
int (7)) { var ("y")
= true ’ }
else { var ("y") =

false

Tokenization Handout

Livecoded Tokenizer

