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• Breaks input into 
smaller pieces 
(effectively words)

• Makes parser's job 
easier

-For example, "return" has special meaning in most programs.  It makes sense to look at "return" as one unit, instead of the separate characters 'r', 'e', 't', 
'u', 'r', 'n'
-Errors here are usually treated as syntax errors; errors tend to be basic in nature
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• Combines "words" 
to form sentences

• AST: data structure 
encoding relevant 
program parts

-Many program parts are irrelevant (e.g., comments and whitespace)
-Also handles operator precedence and parentheses
-All syntax errors are from the tokenizer or parser; most are from the parser



Compiler Architecture

Tokenizer

Parser

Typechecker

Code 
Generator

String (program)

Tokens

Abstract Syntax Tree (AST)

Annotated(?) AST

String (equivalent program)

• Checks for basic 
programming 
errors

• May quietly add 
information to AST

-Performs an analysis of the code (and is sometimes called semantic analysis)
-The origin of type errors
-Depending on the language, it may add information to the AST about the types of the values in play (e.g., x + y could refer to integer division or double 
division in Java; the typechecker will disambiguate between them)
-Can range from relatively simple to being the most complex component, depending on the language (and especially the kinds of errors we want to 
prevent)
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• Performs the actual 
translation

• Source of 
optimizations

-In practice, usually the most complex component (especially for low-level targets)
-Often divided into a middle-end and back-end; the middle-end performs target-independent optimizations, whereas the back-end performs target-
specific optimizations (the tokenizer, parser, and typechecker form the front-end)
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• Helps team 
development

• Tests can precede 
code

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available
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• Helps team 
development

• Tests can precede 
code

Define these with your team first.

-Or at least, well-definable
-Assuming the spec is stable(ish), these components could be made independently (we won't be going to this extreme)
-For each component, it should be possible to at least formulate tests without having that component available
-If everyone agrees on the interface, it's possible to divide work without stepping on each other's toes.  Otherwise, it's a nightmare (based on observations 
from last time)



Project Information



Into the Lexer / 
Tokenizer

-These terms mean the same thing



Basic Idea

• Break input into words, called "tokens"

• Every language has its own specific set of 
tokens



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}



Example
if (x < 7) { 
  y = true; 
} else { 
  y = false; 
}

if ( var("x") <

int(7) ) { var("y")

= true ; }

else { var("y") =

false ; }



Tokenization Handout



Livecoded Tokenizer


