
Language Design Proposal: ScalellScript Inferred

Student Name(s): Kyle Dewey
Language Name: ScalellScript Inferred

Target Language: JavaScript

Language Description: has a Scala-like syntax (https://www.scala-lang.org/), but with a feature set that somewhat resembles Haskell (https://www.haskell.org/). Like Scala, it has mutable state and eager evaluation. Like Haskell, it has algebraic data types. Given the high-level target, this is primarily an exploration of typechecking. The syntax is based on S-expressions to simplify the parser, in exchange for making the typechecker more complex.

Key Features: Type variables / generics, algebraic data types, pattern matching with exhaustivity checking, mutable and immutable variables, higher-order functions, type inference.

Planned Restrictions: there is no type inference, hindering practical usage. There are no optimizations.

Suggested Scoring and Justification:
· Lexer: 10%. Only support for reserved words, identifiers, and integers. No comments.
· Parser: 10%. Uses S-expressions.
· Typechecker: 65%. Higher-order functions, generics, algebraic data types, exhaustivity checking on pattern matching, type inference.
· Code Generator: 15%. Mostly one-to-one with JS.

Syntax:

var is a variable
fn is a named function name
algname is an algebraic datatype name
consname is a constructor name
typevar is a type variable
i is an integer

type ::= `Int` | `Unit` | `Boolean` | Built-in types

 Higher-order function type; params first and return
 type last
 `(` `=>` `(` type* `)` type `)` |

 `(` `alg` algname type* `)` | Generic algebraic type

 typevar Type variable

Arithmetic and relational operations
op ::= `+` | `-` | `*` | `/` | `<` | `==`

param ::= `(` type var `)`

exp ::= var | i | Variables and integers are expressions

 `unit` | Expression that creates a value of type Unit

 `true` | `false` | Booleans

 `(` `println` exp `)` | Prints something to the console

 `(` op exp exp `)` | Arithmetic operations

 Creates a higher-order function
 `(` `=>` `(` param* `)` exp `)` |

 `(` `callhof` exp exp* `)` | Calls a high-order function

 Calls a toplevel function
 `(` `call` fn exp*) |

 `(` `block` stmt* exp `)` | Blocks

 Execute a constructor
 `(` `cons` consname exp* `)` |

 `(` `match` exp case+ `)` Pattern matching

stmt ::= `(` `val` var exp `)` | Immutable variable
 initialization
 `(` `var` type var exp `)` | Mutable variable
 initialization
 `(` `=` var exp `)` Mutable variable assignment

case ::= `(` `case` pattern exp `)`

pattern ::= x | Introduces a new variable
 `_` | Matches everything
 `(` `cons` consname pattern* `)` | Matches
 constructor

Algebraic datatype definition
algdef ::= `(` `algdef` algname `(` typevar* `)` consdef+)`)

consdef ::= `(` consname type* `)` Constructor definition

Function definition
funcdef ::= `(` `def` fn `(` typevar* `)` `(` param* `)`
 type exp `)`

program ::= algdef* funcdef* exp Expression is the entry point

Example (functions on generic lists):

(algdef List (A)
 (lcons A (alg List A))
 (lnil))

(def map (A B) (((alg List A) list)
 ((=> (A) B) f))
 (alg List B)
 (match list
 (case (cons lcons head tail)
 (cons lcons (callhof f head) (call map tail f)))
 (case (cons lnil) (cons nil))))

(def length (A) (((alg List A) list)) Int
 (match list
 (case (cons lcons _ tail)
 (+ 1 (call length tail)))
 (case (cons lnil) 0)))

(call map (cons lcons 1 (cons lnil))
 (=> ((int x)) (+ x 1)))

