
Language Design Proposal: ScalellScript Non-Inferred

Student Name(s): Kyle Dewey
Language Name: ScalellScript Non-Inferred

Target Language: JavaScript

Language Description: has a Scala-like syntax (https://www.scala-lang.org/), but with a feature set that somewhat resembles Haskell (https://www.haskell.org/). Like Scala, it has mutable state and eager evaluation. Like Haskell, it has algebraic data types. Given the high-level target, this is primarily an exploration of typechecking. Compared to the Inferred version, this version emphasizes a much cleaner syntax, in exchange for removing type inference.

Key Features: Type variables / generics, algebraic data types, pattern matching with exhaustivity checking, mutable and immutable variables, higher-order functions, syntax NOT based on S-expressions.

Planned Restrictions: there is no type inference, hindering practical usage. There are no optimizations.

Suggested Scoring and Justification:
· Lexer: 10%. Only support for reserved words, identifiers, and integers. No comments.
· Parser: 20%. Doesn't use S-expressions.
· Typechecker: 55%. Higher-order functions, generics, algebraic data types, exhaustivity checking on pattern matching. Typechecker needs to distinguish between call-like structures.
· Code Generator: 15%. Mostly one-to-one with JS.

Concrete Syntax:

id is an identifier
var is a variable
fn is a named function name
algname is an algebraic datatype name
consname is a constructor name
typevar is a type variable
i is an integer

comma_type_nonempty ::= type (`,` type)*

comma_type ::= [comma_type_nonempty]

type_instantiation ::= [`<` comma_type_nonempty `>`]

type ::=
 `Int` | `Unit` | `Boolean` | Built-in types

 typevar | Type variable

 algname type_instantiation | Generic algebraic type

 Functions and parenthesized types
 `(` comma_type `)` (`=>` type)*

param ::= var `:` type
comma_param ::= [param (`,` param)*]

comma_exp ::= [exp (`,` exp)*]

primary_exp ::=
 id | Could represent var, fn, or consname. Only the
 typechecker can disambiguate.

 i | `true` | `false` | Integers and booleans

 `unit` | Expression that creates a value of type Unit

 `(` exp `)` | Parenthesized expression

 `println` `(` exp `)` | Prints something to the console

 `(` comma_param `)` `=>` exp | Creates a higher-order function

 `{` stmt* exp `}` | Blocks

 `match` exp `{` case+ `}` Pattern matching

call_exp ::= primary_exp (type_instantiation `(` comma_exp `)`)*

mult_exp ::= call_exp ((`*` | `/`) call_exp)*

add_exp ::= mult_exp ((`+` | `-`) mult_exp)*

less_than_exp ::= add_exp [`<` add_exp]

equals_exp ::= less_than_exp [`==` less_than_exp]

exp ::= equals_exp
stmt ::= `val` param `=` exp `;` | Immutable variable
 initialization

 `var` param `=` exp `;` | Mutable variable
 initialization
 var `=` exp `;` Mutable variable assignment

case ::= `case` pattern `=>` exp

comma_pattern_nonempty ::= pattern (`,` pattern)*
comma_pattern ::= [comma_pattern_nonempty]

pattern ::= x | Introduces a new variable
 `_` | Matches everything

 Matches constructor
 consname `(` comma_pattern `)`

comma_typevar ::= typevar (`,` typevar)*

Constructor definition
consdef ::= consname `(` comma_type `)`

comma_consdef ::= consdef (`,` consdef)*

Algebraic datatype definition
algdef ::= `algdef` algname [`<` comma_typevar `>`]
 `{` comma_consdef`}`

Function definition
funcdef ::= `def` fn [`<` comma_typevar `>`] `(` comma_param `)`
 `:` type `=` exp `;`

program ::= algdef* funcdef* exp Expression is the entry point

Example (functions on generic lists):

algdef List<A> {
 Cons(A, List<A>),
 Nil()
}

def map<A, B>(list: List<A>, f: (A) => B): List =
 match list {
 case Cons(head, tail) => Cons(f(head), map<A, B>(tail, f))
 case Nil() => Nil()
 };

def length<A>(list: List<A>): Int =
 match list {
 case Cons(_, tail) => 1 + length<A>(tail)
 case Nil() => 0
 };

map<Int, Int>(Cons<Int>(1, Nil<Int>()), (x: Int) => x + 1)

