
Language Design Proposal: Lowlang Function Pointers

Student Name(s): Kyle Dewey
Language Name: Lowlang Function Pointers

Target Language: MIPS Assembly

Language Description: A very restricted, low-level language that compiles to MIPS assembly. Intended to explore how things can compile to assembly.

Key Features: Pointers, function pointers, expressions

Planned Restrictions: Only stack allocation.

Suggested Scoring and Justification:
· Lexer: 10%. Only support for reserved words, identifiers, and integers. No comments.
· Parser: 10%. Uses S-expressions.
· Typechecker: 20%. Need to handle function pointers. Also need to disambiguate between calling a function directly and calling a function through a function pointer.
· Code Generator: 60%. Compiles expressions down to assembly. Function pointers will likely be non-trivial to handle.

Syntax:

var is a variable
i is an integer

type ::= `int` | Integers are a type
 `void` |
 `(` `func` `(` type* `)` type `)` Function pointer

param :: = `(` type var `)`

Functions
fdef ::= `(` `func` var `(` param* `)` type stmt* `)`

stmt ::= `(` `vardec` type var `)` | Variable declaration
 `(` `assign` var exp `)` | Assignment
 `(` `while` exp stmt `)` | While loops
 `(` `if` exp stmt [stmt] `)` | if
 `(` `return` [exp] `)` | Return
 `(` `block` stmt* `)` | Blocks
 `(` `println` exp `)` | Printing something
 `(` `stmt` exp `)` Expression statements

Arithmetic and relational operators
op ::= `+` | `-` | `*` | `/` | `<` | `==` | `!=`

exp ::= i | `true` | `false` | Integers, booleans
 var | Variables
 `null` | Null; assignable to pointer types

 `(` `&` var `)` | Getting the address of a function
 `(` op exp exp `)` |

 Function call. The first exp will either be a function
 name, or will evaluate to a function pointer. The
 typechecker must disambiguate between the two.
 `(` `call` exp exp* `)`

program ::= fdef* stmt* stmt* is the entry point

Example (indirectly calling a function):

(func add ((int x) (int y)) int
 (return (+ x y)))

(func mult ((int x) (int y)) int
 (return (* x y)))

(func choose ((int boolean)
 ((func (int int) int) f1)
 ((func (int int) int) f2))
 (if boolean
 (return f1)
 (return f2)))

(vardec (func (int int) int) f)
(assign f (call choose 0 (& add) (& mult)))
(println (call f 3 4))

