
Language Design Proposal: pOOP Improved Syntax

Student Name(s): Kyle Dewey
Language Name: pOOP Improved Syntax

Target Language: JavaScript

Language Description: (Pathetic) object-oriented programming. The goal is for me to better understand how object-oriented programming languages work. I want to implement a Java-like language with classes and subclasses. Unlike pOOP base, this version effectively cheats and compiles to JavaScript, and has a much more intuitive syntax.

Key Features: Objects + methods with class-based inheritance, subtyping, checking if a variable is initialized before use, checking if void is used as a value, checking that a function returning non-void always returns, non-S-expression-based syntax.

Planned Restrictions: No optimizations.

Suggested Scoring and Justification:
· Lexer: 10%. Only support for reserved words, identifiers, and integers. No comments.
· Parser: 20%. Does not use S-expressions.
· Typechecker: 40%. Handles subtyping and method overloading, checking if a variable is initialized before use, checking if void is used as a value, checking that a function returning non-void always returns.
· Code Generator: 30%. Needs to work with JavaScript's prototype-based inheritance, which isn't quite one-to-one, but still pretty close.

Concrete Syntax:

var is a variable
classname is the name of a class
methodname is the name of a method
str is a string
i is an integer

type ::= `Int` | `Boolean` | `Void` | Built-in types
 classname class type; includes Object and String

comma_exp ::= [exp (`,` exp)*]

primary_exp ::=
 var | str | i | Variables, strings, and integers are
 expressions
 `(` exp `)` | Parenthesized expressions
 `this` | Refers to my instance
 `true` | `false` | Booleans
 `println` `(` exp `)` | Prints something to the terminal
 `new` classname `(` comma_exp `)` Creates a new object

call_exp ::= primary_exp (`.` methodname `(` comma_exp `)`)*

mult_exp ::= call_exp ((`*` | `/`) call_exp)*

add_exp ::= mult_exp ((`+` | `-`) mult_exp)*

exp ::= add_exp

vardec ::= type var

stmt ::= exp `;` | Expression statements
 vardec `;` | Variable declaration
 var `=` exp `;` | Assignment
 `while` `(` exp `)` stmt | while loops
 `break` `;` | break
 `return` [exp] `;` | return, possibly void
 if with optional else
 `if` `(` exp `)` stmt [`else` stmt] |
 `{` stmt* `}` Block

comma_vardec ::= [vardec (`,` vardec)*]

methoddef ::= `method` methodname `(` comma_vardec `)` type
 `{` stmt* `}`

constructor ::= `init` `(` comma_vardec `)` `{`
 [`super` `(` comma_exp `)` `;`]
 stmt*
 `}`
classdef ::= `class` classname [`extends` classname] `{`
 (vardec `;`)*
 constructor
 methoddef*
 `}`

program ::= classdef* stmt+ stmt+ is the entry point

Example (animals with a speak method):

class Animal {
 init() {}
 method speak() Void { return println(0); }
}
class Cat extends Animal {
 init() { super(); }
 method speak() Void { return println(1); }
}
class Dog extends Animal {
 init() { super(); }
 method speak() Void { return println(2); }
}

Animal cat;
Animal dog;
cat = new Cat();
dog = new Dog();
cat.speak();
dog.speak();

