
Language Design Proposal: Refcount

Student Name(s): Kyle Dewey
Language Name: Refcount

Target Language: C

Language Description: A basic language with structs and a clean(ish) syntax. Has built-in reference counting, allowing for memory reclamation. Structs are immutable.

Key Features: Structs, reference counting.

Planned Restrictions: All structs are heap allocated.

Suggested Scoring and Justification:
· Lexer: 10%. Only support for reserved words, identifiers, and integers. No comments.
· Parser: 20%. Syntax isn't based on S-expressions.
· Typechecker: 15%. Very basic.
· Code Generator: 55%. All structs internally have components for reference counting.

Syntax:

var is a variable
structname is the name of a structure
funcname is the name of a function
i is an integer

type ::= `int` | `bool` | Integers and booleans are types
 `void` |
 structname | Structures are a type

param :: = type var

comma_param ::= [param (`,` param)*]

Structs
structdef ::= `struct` structname `{` (param `;`)* `}`

Functions
fdef ::= `func` funcname `(` comma_param `)` `:` type
 `{` stmt* `}`

struct_actual_param ::= var `:` exp

struct_actual_params ::=
 [struct_actual_param (`,` struct_actual_param)*]

comma_exp ::= [exp (`,` exp)*]

primary_exp ::=
 i | `true` | `false` | var | Integers, booleans, and variables
 `null` | Null; assignable to struct types
 `(` exp `)` | Parenthesized expressions

 Allocate a new struct
 `new` structname `{` struct_actual_params `}` |

 Function calls
 funcname `(` comma_exp `)`

Accessing the field of a struct or calls
dot_exp ::= primary_exp (`.` var)*

mult_exp ::= dot_exp ((`*` | `/`) dot_exp)*

add_exp ::= mult_exp ((`+` | `-`) mult_exp)*

less_than_exp ::= add_exp [`<` add_exp]

equals_exp ::= less_than_exp ((`==` | `!=`) less_than_exp)*

exp ::= equals_exp

stmt ::= type var `=` exp `;` | Variable declaration
 var `=` exp `;` | Assignment
 `if` `(` exp `)` stmt [`else` stmt] | if
 `while` `(` exp `)` stmt | while
 `break` `;` | break
 `println` `(` exp `)` | Printing something
 `{` stmt* `}` | Block
 `return` [exp] `;` | Return
 exp `;` Expression statements

program ::= structdef* fdef* stmt* stmt* is the entry point

Example (length of a linked list):

struct Node {
 int value;
 Node rest;
}

func length(Node list): int {
 int retval = 0;
 while (list != null) {
 retval = retval + 1;
 list = list.next;
 }
 return retval;
}

Node list =
 new Node {
 value: 0,
 rest: new Node {
 value: 1,
 rest: new Node {
 value: 2,
 rest: null
 }
 }
 };

println(length(list));

