
Snippet of Kyle’s Reading List

Kyle Dewey

August 28, 2018

1 Dealing with Loops for Dynamic Invariant De-
tection

• Patrice Godefroid and Daniel Luchaup. Automatic partial loop summa-
rization in dynamic test generation. In Proceedings of the 2011 Inter-
national Symposium on Software Testing and Analysis, ISSTA ’11, pages
23–33, New York, NY, USA, 2011. ACM

Attempts to automatically generate partial loop invariants by inferring
what is changed concretely per loop iteration.

• Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song.
Loop-extended symbolic execution on binary programs. In Proceedings of
the eighteenth international symposium on Software testing and analysis,
ISSTA ’09, pages 225–236, New York, NY, USA, 2009. ACM

Models loop-dependent variables as symbolic variables to better handle
loops.

2 Dealing with Functions for Dynamic Invariant
Detection

• Patricia Mouy, Bruno Marre, Nicky Willams, and Pascale Le Gall. Gener-
ation of all-paths unit test with function calls. In Proceedings of the 2008
International Conference on Software Testing, Verification, and Valida-
tion, ICST ’08, pages 32–41, Washington, DC, USA, 2008. IEEE Com-
puter Society

Attempts to abstract functions away in symbolic execution to make in-
terprocedural analysis more feasible. Related to [24]. Major difference:
summaries are provided statically by previous runs / other techniques as
opposed to being dynamically generated.

1



• Patrice Godefroid. Compositional dynamic test generation. In Proceedings
of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’07, pages 47–54, New York, NY, USA,
2007. ACM

Summarizes functions to make interprocedural analysis cheaper for sym-
bolic execution. These summaries are based on concrete executions of the
functions. If we ever encounter an input to the function that is symboli-
cally idential to a previous input, then we need only return that input’s
symbolic value.
NOTE TO SELF:What about non-local side effects?

This whole process is very similar to deriving the invariants generated
by DySy [15], except that these invariants can later be used in place of
function calls.

3 Parallelizing DSE/SE

• J.H. Siddiqui and S. Khurshid. Parsym: Parallel symbolic execution. In
Software Technology and Engineering (ICSTE), 2010 2nd International
Conference on, volume 1, pages V1–405 –V1–409, oct. 2010

Parallelizing concolic execution.

• Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic execution
using ranged analysis. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications,
OOPSLA ’12, pages 523–536, New York, NY, USA, 2012. ACM

Consider the entire DSE exploration space as a single tree of paths. Note
that this is applicable only to concolic execution. In practice, this tree
can be infinite, but assume that it’s not. The basic idea is that we can
partition this tree recursively into sections, each of which can be tested
independently of each other. This allows for a parallel DSE. Partitions
can be made either statically or dynamically. Given that we do not know
the structure of this tree a priori in general, these partitions seem to be
best made dynamically. Implemented on top of KLEE [10]. Showed 6.6X
average speedup for 10 workers, though greater than 10X was possible
likely due to efficient caching benefits across multiple executions due to
KLEE. They generate path conditions from a single concrete input. This
allows them to store only inputs as opposed to entire paths, which can
dramatically decrease the size of what needs to be stored to encode a path
(i.e. a path can be derived unambiguously through concrete execution of
the stored inputs). Defines an ordering between all paths by considering
the true side of a branch to the false side. Considers two sets of inputs to

2



be equivalent if they result in the same path condition (in the same vein
as [48], though they don’t cite [48]).

The basic idea is that the start and end of a range are defined by τstart
and τend, respectively. The current test is defined simply by τ . If at any
point τ =⇒ τend, then we have reached the end of the range that we
were intended to execute. Additionally, for any branch point discovered
by analysis of the range between τstart and τend, we can dynamically split
it up, adding additional ranges between τstart and τ , and between τ and
τend. This does cause for some redundant execution (i.e. after this split
the test case defined by τ will be executed twice, once at the end of the
[τstart, τ ] range and again at the beginning of the [τ, τend] range), though
the extra computation was not significant in the paper’s evaluation. The
rest of the paper goes over some various applications of this ranged SE
technique.

4 DSE / SE in Practice

• Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
Slam and static driver verifier: Technology transfer of formal methods
inside microsoft. In IFM, pages 1–20. Springer, 2004

How SLAM came to be and how it has been used within Microsoft.

• Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu,
Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution
for software testing in practice: preliminary assessment. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 1066–1071, New York, NY, USA, 2011. ACM

A survey of different symbolic execution techniques that have been used
in practice.

5 Building Tests using DSE / SE

• Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation
for .net. In Proceedings of the 2nd international conference on Tests and
proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag

Discussion of Pex for .NET testing. Builds an actual test suite for a given
program. Uses Z3 [19] on the backend as an SMT solver. According
to [33], it will encode floating point operations as uninterpreted functions
(coined custom arithmetic solvers) instead of doing them directly in Z3 in
an (unsound) attempt to avoid some of the problems mentioned in [6,36].
Also a set of really good references.

3



Features advanced search strategies that take program structure into ac-
count. According to the authors, this strategy is more effective even than
BFS. Can also handle pointer arithmetic, though at the cost of soundness.
If a handful of assumptions are true, it can actually be used for verifica-
tion purposes. Other than common bugs (e.g., index out of bounds, null
pointer dereferencing, assertion violations), does not handle the oracle
problem.

• Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: a
framework for generating object-oriented unit tests using symbolic execu-
tion. In Proceedings of the 11th international conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS’05, pages
365–381, Berlin, Heidelberg, 2005. Springer-Verlag

Symbolic execution for specifically object-oriented programs. Actually
builds stateful unit tests that will explore different code paths.

• Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson En-
gler. Automatically generating malicious disks using symbolic execution.
In Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP
’06, pages 243–257, Washington, DC, USA, 2006. IEEE Computer Society

Generates disks instead of individual inputs, specifically for testing filesys-
tem code. Uses EXE [11] as part of this process. Found that few loops
involve symbolic constraints in the context of filesystem code. Internally
uses STP [23] for constraint solving, and models all program data as bit-
vectors to allow for the extensive sorts of type-unsafe casting seen in the C
code of filesystems. Will replace division and modulo by symbolic values
with an appropriate bit shift or bitmask, since STP does not support these
operations. Good real-life application; they had to run nearly the entire
Linux kernel with exe-cc [11]. Handles loops in a fairly naive way, using
the usual k-limiting. They attempt to choose paths that are of greater
value with some heuristics, but overall it doesn’t seem very sophisticated.
Were able to find bugs in all the filesystems tested.

• Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM

Basic observation: compilers and interpreters are very difficult to test
with DSE, as we end up symbolically going through the parser. This
dramatically increases the search space in a way that we typically find
uninteresting; that is, if we are interested in testing the internals of a
compiler, we probably don’t care about bugs in the parser. The idea here
is to augment the usual constraint solver with the capability to understand
the grammar of the input language, such that we only generate well-formed

4



inputs. This avoids performing symbolic execution over raw programs,
instead focusing things on ASTs.

Essentially, this treats whole tokens symbolically, as opposed to individual
bytes. Onto the path condition, a precondition is added which roughly
states that the input is parseable. There are more details in the paper
pertaining to exactly how they implemented this; they implemented a
custom decision procedure for this part, but the idea is fundamentally the
same. Evaluation-wise, the data shows that in comparing grammar-based
black-box generation to their technique, slightly more inputs reach the
code generator, and overall they achieve 81.5% code generator coverage
with their technique versus 61.2% code generator coverage for grammar-
based black box techniques.
NOTE TO SELF:In both cases, one would expect that 100% of inputs
would reach the code generator, but their grammar definition is an over-
approximation. For example, they will emit break statements even if they
are not in a loop. As for the higher code coverage of whitebox techniques
here, it should be noted that they used a random search strategy for the
grammar-based end of things. It seems with a bit more smarts on the
black-box end we might be able to push the limit more.

6 Assorted Existing DSE / SE Frameworks

• Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Proceedings of the 8th international SPIN
workshop on Model checking of software, SPIN ’01, pages 103–122, New
York, NY, USA, 2001. Springer-Verlag New York, Inc

The original SLAM paper.

• Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX conference on Operating systems design
and implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008.
USENIX Association

Introduces KLEE, a symbolic interpreter over LLVM [34] bitcode.

• Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun.
jfuzz: A concolic whitebox fuzzer for java. In Ewen Denney, Dimitra Gi-
annakopoulou, and Corina S. Pasareanu, editors, NASA Formal Methods,
volume NASA/CP-2009-215407 of NASA Conference Proceedings, pages
121–125, 2009

Adds concolic execution to Java PathFinder [60].

5



• Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008

Discussion of SAGE, which is another concolic framework used extensively
with Microsoft.

• Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed au-
tomated random testing. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, PLDI
’05, pages 213–223, New York, NY, USA, 2005. ACM

An early application of DSE to real-world scenarios. Claims that running
many tests can be more expensive than static analysis, at least for their
application. Uses concolic execution. If it finds something that the con-
straint solver cannot handle, then it will fall back to the concrete value (i.e.
multiplication involving two symbolic variables). Claims that it usually
has to fall back to a concrete value somewhere when it throws information
to the constraint solver.

• Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. Exe: automatically generating inputs of death. In
Proceedings of the 13th ACM conference on Computer and communica-
tions security, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM

An analysis framework for C that can handle all the values seen in C,
except for floating-point operations. Implemented as a compiler for C
that adds all the neccessary DSE instrumentation to the code. Was co-
designed with STP [23] and internally uses it heavily, representing most
everything using bit-vectors to allow for all sorts of nasty C-style bit ma-
nipulation operations. Can reason about what it terms as “symbolic point-
ers”, which seem to be normal pointers except they make the typical as-
sumption that the programmer will not attempt to escape from an object.
Specifically, given a concrete array a, a symbolic integer i with the con-
straint i ≥ 0 ∧ i ≥ 10, and a conditional if (a[i] == 10)..., it is able to
reason about all the possible different positions in the array (concretely,
this constraint is equivalent to a[0] == 10∨a[1] == 10∨...∨a[10] == 10).

• Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input
generation for database applications. In Proceedings of the 2007 inter-
national symposium on Software testing and analysis, ISSTA ’07, pages
151–162, New York, NY, USA, 2007. ACM

Uses concolic execution to find SQL injection attacks in database applica-
tions. They get symbolic values via a special input() function. Features a
string solver that can handle unbounded strings over regular languages.
They deal with both strings and integer arithmetic, but a look at their
constraint language reveals that arithmetic is extremely limited, and they

6



are forced to resort to concrete values likely a lot. They break an ini-
tial constraint into both a string-only and an arithmetic-only constraint,
and solve them independently. Given the inherient lossiness of this pro-
cess, this explains why their constraint language is so limited (it doesn’t
even feature integer arithmetic or string concatenation). They claim that
this isn’t a problem in their applications, which may be true specifically
for generating SQL queries. Tightly coupled with a database. Finding
a satisfying assignment for a constraint involves both program variables
and database entries; their framework actually inserts database entries as
it runs (the database can be viewed as a special kind of auxilliary store).
States that determining satisfiability of strings in the precense of a length

function is an open problem, citing [20,47] as evidence.

7 When and How Often Daikon [22] is Wrong

• Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring
better contracts. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 191–200, New York, NY, USA,
2011. ACM

Used Daikon with custom templates to infer contracts for Eiffel. Based
on their analysis the resulting contracts are between 88-100% correct,
usually leaning towards the mid to high 90’s. Note that since they were
using templates, this is likely biased to be correct whenever they find a
matching template.

• Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. Under-
standing user understanding: determining correctness of generated pro-
gram invariants. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 188–198, New York,
NY, USA, 2012. ACM

Given programs and Daikon-inferred invariants, users were asked to clas-
sify them as either correct or incorrect. The authors found that correct
invariants are misclassified as incorrect 9.1% to 31.7% of the time, and
incorrect invariants were misclassified as correct an alarming 26.1% to
58.6% of the time. This motivates that Daikon alone is not good enough
for generating invariants for its own sake, despite the fact that researchers
frequently jump to Daikon when they want dynamic invariants (evidenced
by many of the papers that cite both [22] and [15]).

• Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative
study of programmer-written and automatically inferred contracts. In
Proceedings of the eighteenth international symposium on Software testing
and analysis, ISSTA ’09, pages 93–104, New York, NY, USA, 2009. ACM

7



Compared programmer-provided invariants to those generated by Daikon
in Eiffel code. Found that Daikon will produce about 5x as many assertions
as do programmers. However, of these assertions, roughly a third of them
are either incorrect or irrelevant. Additionally, the Daikon assertions seem
pretty weak, as implied by the fact that it can find only around 60% of
the assertions specifed by the programmers. The conclusions here are in
the same vein as [57]: Daikon alone is not strong enough to provide sound
enough and precise enough invariants to be useful just for the point of
deriving invariants.

• Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static
checking: an empirical evaluation. SIGSOFT Softw. Eng. Notes, 27(6):11–
20, November 2002

Many researchers claim that determining what property to check is a more
difficult problem than checking the property itself. Compares a custom
implementation of Houdini (static invariants) to Daikon (dynamic invari-
ants), within the ESC/Java framework (Java with a layer for unsound
verification). Their own Houdini implementation was used since it is not
available; they call it Whodini. Users were just given the Daikon invari-
ants. Claims that when Daikon is given an adequate test suite, it gives
good annotations and inferred invariants, citing [42, 43] as evidence. (Of
course, it never defines what it means by an “adequate test suite”. It
was stated that tests were run for several minutes; these are presumed
random.)

The actual study seems a bit biased; they measured how far off users
were from a correct answer based on the number of edits needed by the
authors to make it correct. Measured number of annotations (which can
be reduced without any loss of meaning via conjunction), and semantic
sets. Did a lot of hand correction, it seems. Used α = 0.10 for statistical
p-values, instead of the usual α = 0.05, which indicates to me that their
results could not have been great. They were only able to show that the
program under question had the most variance of the results, which makes
sense given that they were of various verification difficulty levels. With
p = 0.07, any tool predicted success, with no tools at all resulting in a
33% success rate. This high success rate without anything at all, combined
with the problems surrounding added difficulty, indicates to me that these
tests only go to show that verification on toy problems is easy regardless of
what you use. Essentially, the study concludes that annotation assistance
tools are useless, which sort of indicates that their study was flawed.

Found that ESC/Java was so slow that users generally would just think
hard about the problem and write down invariants this way rather than
going incrementally. This is backed up by the fact that the pure Whodini
group started to write more redundant assertions that would have been
inferred by Whodini as they proceeded through the activities. This is the
nail in the coffin for this study - the tools being studied are too slow to use,

8



so in practice everyone is merely going manual. Additionally, Daikon has
an unfair advantage: if it infers an incorrect invariant, ESC/Java simply
says that it’s not correct. The penality for incorrect invariants is thus very
small with Daikon. The only real negative that users noted about Daikon
is that the inferred invariants were generally textually large, which reflects
its overly specific nature. It claims that the Daikon test suite was poor,
but given how short the code was coupled with how long the tests took
indicates to me that this is untrue.

For even more evidence that this study was too small and contrived to be
of any real value, see the summary for [50].

8 Miscellaneous SE / DSE

• Koushik Sen. Scalable automated methods for dynamic program analysis.
In PhD Dissertation, 2006

Discusses how to analyze a number of different program features (such as
lazy evaluation) using symbolic execution.

9 Representing Polyhedra

• Christoph Scholl, Stefan Disch, Florian Pigorsch, and Stefan Kupferschmid.
Computing optimized representations for non-convex polyhedra by detec-
tion and removal of redundant linear constraints. In Proceedings of the
15th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems: Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009,, TACAS ’09,
pages 383–397, Berlin, Heidelberg, 2009. Springer-Verlag

Uses an SMT solver to help find tautologies and contraditions in sub-
constraints of non-convex polyhedra to simplify constraints. It seems that
such simplification only needs to be performed for the non-convex ver-
sions; as to why I do not understand as of this writing. The simplification
seems to be in the same vein as what is discussed in [15], but in far more
detail.

• Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. A new encoding
and implementation of not necessarily closed convex polyhedra. In UNI-
VERSITY OF SOUTHAMPTON, page 161. Publications, 2003

An efficient way to represent NNC polyhedra, using only a linear number
of constraints (in one representation) and a constant number of generators
of rays / lines (in a second representation that is maintained in parallel
with the first representation).

9



• Doran K. Wilde. A library for doing polyhedral operations. Technical
report, 1993

The original master’s thesis that introduced the Parma Polyhedral Li-
brary. Goes very in-depth with how polyhedra were represented, right
down to the members of C structs. Overall a very good introduction to
convex polyhedra and how to represent them in practice.

10 Application of Polyhedra to Programming
Languages

• Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM

Original paper that introduced convex polyhedra as an abstract domain
for the discovery of linear constraints among integer program variables.
Difficult but worthwhile read.

• Antoine Miné. Relational abstract domains for the detection of floating-
point run-time errors. CoRR, abs/cs/0703077, 2007

Discusses how to model operations involving floating-point numbers (specif-
ically the IEEE-754 numbers we all know and love) in different numerical
domains commonly used in abstract interpretation, including that of con-
vex polyhedra. Employs a series of sound approximations in order to do
this. The term given to this is linearization (as in, we are representing
what were originally non-linear constraints in a linear domain). Goes over
the reasons why floating point numbers, along with non-linear operations
like multiplication and division, are difficult to represent with traditional
abstract domains.

Floating-point numbers are themselves approximations of real numbers,
as are the operations that can be performed on them. These approximated
operations are neither associative nor distributive like their precise coun-
terparts, which (based on my understanding) means that monotonicity is
lost if we were to represent this in a lattice. Related to this is a hint at a
reason why convex polyhedra only support linear constraints: multiplica-
tion and division are not neccessarily closed operations. I.e. the product
of two convex polyhedra is not necessarily itself a convex polyhedron.

• Liqian Chen, Antoine Min, Ji Wang, and Patrick Cousot. Interval poly-
hedra: An abstract domain to infer interval linear relationships. In Jens
Palsberg and Zhendong Su, editors, SAS, volume 5673 of Lecture Notes in
Computer Science, pages 309–325. Springer, 2009

10



Introduces a new abstract domain that combines convex polyhedra, non-
convex polyhedra, and it appears even powersets of both of these into a
single unified domain: interval polyhedra. The domain is strictly more
general than these and thus potentually more precise, at the cost of worse
performance. They can better handle non-linear operations like multi-
plication and division, without resorting to the sort of lossy linearization
techniques detailed in [37]. They can also natively handle constraints
involving infinity (like true intervals) and certain forms of negation and
disjunction. (Indicentally, negation and disjunction cannot be precisely
handled by normal convex polyhedra, as these operations are not closed.
The results of these operations are not necessarily convex polyhedra them-
selves.)

11 Invariants on Demand

• Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample driven
refinement for abstract interpretation. In Proceedings of the 12th inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’06, pages 474–488, Berlin, Heidelberg, 2006.
Springer-Verlag

While the paper applies convex polyhedra to programming languages, this
is merely an application of their technique. They describe a way to lift a
widening operator on some abstract domain to the powerset of that ab-
stract domain. They also use pre-image computation to determine when
widening should be used and when a more precise join (least upper bound
in their paper) should be used. This pre-image computation is done on
demand, in a manner similar to [35]. At the beginning, they will always
choose to widen over join, until they are unable to prove an assertion. At
this point, they use pre-image computation to figure out exactly at which
widening point the amount of precision necessary to prove the assertion
was lost, and they subsequently restart from this point, applying join in-
stead. Since widening is typically much cheaper than join, this avoids the
extra computing cost for getting precision that may not even be needed.
This paper is relevant as a client application (see the summary for [35]),
and also to convex polyhedra. They are able to infer a disjunctive invari-
ant due to the usage of a powerset of convex polyhedra, without resorting
to heuristics.

• K. Rustan M. Leino and Francesco Logozzo. Loop invariants on de-
mand. In Proceedings of the Third Asian conference on Programming
Languages and Systems, APLAS’05, pages 119–134, Berlin, Heidelberg,
2005. Springer-Verlag

11



The same sort of on-demand approach described in [29] is used, in that
the analysis will a sort of backtracking when it is unable to prove an as-
sertion. In this paper, they will instead opt for a more precise abstract
domain in this case. For example, the analysis may switching from using
normal intervals to convex polyhedra. In this way, they avoid deriving in-
formation that is unneccessarily precise for proving some given invariant,
saving possibly significant computation time. (This is unfortunately an
assertion on the part of the authors; they do not evaluate their approach
in the same manner that [29] does.)

12 SAT Solvers

• Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, July 1960

Original paper describing the DPLL procedure. Conjunctive normal form
(CNF) is used because it’s easier to reason about a normal form, and there
is no exponential blowup possible as with disjunctive normal form. Has
three rules for simplifying clauses:

1. For eliminating one-literal clauses:

(a) In a series of conjunctions, whenever . . . ∧ p ∧ . . . ∧ ¬p ∧ . . . is
disovered, the whole clause can be replaced with false.

(b) If p is a clause in CNF form, then all other clauses that contain
p affirmatively can be removed, and all instances of ¬p can be
removed.

(c) If ¬p is a clause in CNF form, then all other clauses that contain
¬p can be removed, and all instances of p can be removed.

2. For all CNF clauses, if the parity of p is the same, then all clauses
which contain p (or ¬p) can be deleted.

3. Let the given CNF formula be put into the form (A∨p)∧(B∨ 6= p)∧R,
where A, B, and R are free of p. This can then be replaced with
(A ∨B) ∧R.

Empty clauses become true in this system. By repeatedly applying the
above simplifications, it is possible to refute any formula, although this
algorithm is non-terminating in the case of satisfiability.

• Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962

First implementation of DPLL [17]. Instead of using elimination rule #3
as-is, they split (A∨p)∧ (B∨ 6= p)∧R into cases for (A∧R) (when p = 0)
and (B ∧ R) (when p = 1). This was done to avoid the addition of many
new clauses.

12



• Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: engineering an efficient sat solver. In Proceed-
ings of the 38th annual Design Automation Conference, DAC ’01, pages
530–535, New York, NY, USA, 2001. ACM

Advantage of CNF: if ay clause is unsat, the whole problem is unsat.
Learning why the unsat clause is unsat can reveal a great deal of informa-
tion. Unit clause: when a given clause is not yet satisfied, and all but one
literals are assigned. Boolean constraint propagation uses unit clauses.
The necessary value to make the clause hold is referred to as an implica-
tion. Implications are given integer ids based on the height of the stack.
This way, if backtracking must occur to pop down to a stack depth of n,
then any implications with ids > n need to be removed (i.e. these are for
decisions made after the point we backtracked to).

Repeated applications of the unit clause rule are for a sort of forced deci-
sion - we know for certain that we cannot proceed unless certain variables
have certain values. These sort of repeated applications are known as
binary contraint propagation (BCP).

The authors observe that for most SAT problems, 90% of execution time is
spent in BCP. Efficient BCP implementation necessitates a way to quickly
determine which variables are newly implied by the addition of a given
assignment.

The basic idea is to “watch” two literals in a clause. We only need to
examine a clause if one of the literals has been assigned to 0. While this
does not guarantee that we will be able to apply the unit clause rule (as
with initially three unassigned literals and ony assigning one of them, but
the one assigned was watched), it increases the likelihood. Additionally,
in the case that the unit clause rule is applicable, then the unassigned
watched literal is the new literal to assign.

The authors hint that many previous evaluations have focused only on
the number of decision points made, i.e. how many random choices were
needed. They point out that this is a poor metric as it doesn’t incorporate
BCP at all; it is possible to have a case with few decisions that is BCP-
heavy, as well as a case with many decisions that is light on BCP. Given
that BCP is the dominating factor, if we only optimize for the number of
decisions, then we can actually hurt performance.

They introduce the Variable State Independent Decaying Sum (VSIDS)
heuristic, which priorities BCP on clauses in a way that focuses on con-
flicts. There are five basic steps to this heuristic:

1. Each literal has a counter initialized to 0

2. When a clause is added to the database, the counter corresponding
to each literal is incremented.

3. At decision points, the literal with the highest counter is chosen

13



4. Ties are broken randomly by default

5. Periodically, all counters are divided by a constant (focusing on more
recent conflicts)

The basic intuition behind this scheme is that difficult problems tend to
introduce many conflict clauses, to the point where the conflict clauses
contribute to the majority of the problem. These tend to drive the search
of the problem, and so this heuristic tends to favor searching in a conflict-
driven way.
NOTE TO SELF:There is a whole lot of “tends to” in here. Given
the NPC nature of the problem, there isn’t much choice but to resort to
heuristics that can potentially fail.

Using this heuristic, generally smaller problems were completely unaf-
fected in terms of performance relative to competing implementations.
However, for many larger problems, Chaff saw between one to two orders
of magnitude improvement in performance.

• Joao P. Marques Silva and Karem A. Sakallah. Grasp - a new search al-
gorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM interna-
tional conference on Computer-aided design, ICCAD ’96, pages 220–227,
Washington, DC, USA, 1996. IEEE Computer Society

Introduces GRASP. Key insight: the introduction of non-chronological
backtracking. Seems to be the first paper that allows for the addition
of clauses dynamically. Previous techniques appear to utilize learning,
though not with this technique and with a more coarse-grained approach.
Introduces the implication graph. For determining the conflicting clause,
one needs to go backwards from a conflict node in the implication graph.
If we find that the conflicting clause was from assignments at levels n
and m, where m ≥ n (not including the current level), then we can set
the current backtracking level to m. This is the non-chronological part;
a chronological backtrack would still explore it’s part of the state space
completely before backtracking to m. In other words, we always backtrack
to the highest available level (i.e. lowest in the tree).

• Robert E. Shostak. An algorithm for reasoning about equality. Commun.
ACM, 21(7):583–585, July 1978

Introduces Shostak’s decision procedure for EUF without disjunction.
With a union-find data structure, the algorithm runs in O(nlg(n)). Com-
putes the congruence closure by putting variables in equivalence classes.
If it ever becomes the case where two variables x and y are in the same
equivalence class, and there exists a literal in the formula of the form
x 6= y, then the formula is unsatisfiable. However, if all classes stabilize
and such a case is never encountered, then the formula is satisfiable.

14



To illustrate, consider the following formula:

x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F(x1) 6= F(x3)

The algorithm will first generate the following equivalence classes:

{x1, x2}, {x2, x3}, {x4, x5}, {F(x1)}{F(x3)}

The first two classes can be merged, since they both contain x2:

{x1, x2, x3}, {x4, x5}, {F(x1)}{F(x3)}

Since now x1 and x3 are in the same class, F(x1) and F(x3) can be merged
as well:

{x1, x2, x3}, {x4, x5}, {F(x1), F(x3)}

At this point, both F(x1) and F(x3) are in the same equivalence class.
However, the original formula contains the disequality F(x1) 6= F(x3). As
such, the formula is unsatisfiable.

This method can be extended to handle disjunction via case-splitting or
putting the initial formula into DNF (as opposed to CNF). With DNF, the
process needs to be run on all formulas. Of course, either way introduces
an exponential time complexity. Because this method does not learn from
disjunctions, it is poorly suited for more realistic cases of SAT.

• Randal E. Bryant, Steven German, and Miroslav N. Velev. Exploiting
positive equality in a logic of equality with uninterpreted functions. pages
470–482. Springer-Verlag, 1999

Introduces Bryant’s reduction for reducing equality logic with uninter-
preted functions down to SAT. They deal with EUF (theory of equality
+ uninterpreted functions) with an if-then-else (ITE) operator. By
exploiting ITE, they achieve a reduction that is potentially smaller than
Ackermann’s reduction [1] in terms of the number of variables introduced.
This reduction is illustrated in a step-by-step fashion below:

x = y =⇒ g(f(x)) = g(f(y)) (1)

¬(x = y) ∨ g(f(x)) = g(f(y)) (2)

¬(x = y) ∨ g(vf1) = g(ITE (y = x, vf1, vf2)) (3)

¬(x = y) ∨ vg1 = ITE (ITE (y = x, vf1, vf2) = vf1, vg1, vg2) (4)

In addition, we must also add constraints involving the functions, which
follow in a straightforward manner:

vf1 ∧ ITE (y = x, vf1, vf2) ∧ ITE (ITE (y = x, vf1, vf2) = vf1, vg1, vg2)

15



For validity, it must be the case that the above constraints apply the
transformed formula, and for satisfiability the conjunction is instead ap-
propriate.

Another example is illustrated below:

o1 = i ∧ o2 = g(oi, i) ∧ o3 = g(o2, i) (1)

o1 = i ∧ o2 = g1 ∧ o3 = ITE (o1 = o2 ∧ i = i, g1, g2) (2)

. . . with the additional constraints:

g1 ∧ ITE (o1 = o2 ∧ i = i, g1, g2)

Individual levels of function calls are stripped away from the inside out.
Function calls with a given set of parameters are replaced with variables
representing these calls. If the parameters are the same, then these aux-
illiary function call variables are the same.

• Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with tran-
sitivity constraints. ACM Trans. Comput. Logic, 3(4):604–627, October
2002

This introduces a sparse method of adding the sort of transitivity con-
straints seen in Ackermann’s reduction [1] and Bryant’s reduction [7].
With this method, only those constraints which are shown to be necessary
are added, which is typically far fewer than those possible. The basic idea
is to construct a graph where vertices are atoms (irrespective of polarity)
and edges represent both = and 6= (they are conflated). With this repre-
sentation, variable relationships which may be influenced by transitivity
constraints become apparent through the precense of cycles. The nature
of such cycles indicates which transitivity constraints must be added. For
example, consider a simple cycle x1, x2, x3, x4, x1. Assuming there are no
other edges, an edge must be added either between x1 and x3 or between
x2 and x4. This will form a triangle (a particular representation is chosen
which will make this true, and this representation can be derived in poly-
nomial time). This process must be completed until all cycles in the graph
form triangles (i.e. a chordal version). For each triangle, constraints must
be added such that each pair of edges implies the third edge (i.e. equality
between any two variables in the triangle implies equality with the third
variable). This adds three implications per triangle.

This results in fewer overall clauses introduced, while still avoiding the
introduction of additional variables. Additionally, according to [32], this
can be used to generate smaller equality graphs, and to reduce the size of
the state space (i.e. in the spirit of [45]).

• Amir Pnueli, Yoav Rodeh, Ofer Strichmann, and Michael Siegel. The
small model property: how small can it be? Inf. Comput., 178(1):279–293,

16



October 2002

The theory of equality deals with some intentionally unspecified domain.
Concretely, as with a particular satisfying assignment, variable values are
members of some given domain. This paper deals with encoding this sort
of information in pure SAT in a way that is unspecific to the given domain.
Given n variables from an arbitrary domain D, an upper bound on this
mapping is nn. In other words, every variable can take on up to n values
from D, and with nn members of D (i.e. subsets of D which do not
overlap with respect to n) we can clearly allow for each variable to take
on completely different vaues. With an example, consider the formula
x1 = x2 ∧ x2 = x3, which contains 3 variables. If x is over the natural
numbers (i.e. N), then we can partition N like so: [0, 1, 2], [0, 1, 2], [0, 1, 2].

A lower bound on this can be achieved. From the same example above,
we can also partition like so: [0, 1, 2], [0, 1], [0]. This still permits each
variable to be different. Using this method, the mapping is n!, which is
clearly smaller than nn. While this still may appear large, even nn can
be encoded compactly: each variable can be represented with lg(n) bits,
as with typical binary encoding. As such, even for the nn mapping, for n
variables we introduce nlg(n) binary variables, which is only polynomial
with respect to the original formula.

• Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan Brady. Deciding bit-vector arithmetic with abstrac-
tion. In Proceedings of the 13th international conference on Tools and al-
gorithms for the construction and analysis of systems, TACAS’07, pages
358–372, Berlin, Heidelberg, 2007. Springer-Verlag

Real systems generally work at the word level - data acts as real values
within a word, and as bits beyond a word. Bit-blasting (simply converting
everything down to SAT) loses high-level structure, and performs poorly
in the precense of disjunctions [23]. At the other extreme, reasoning over
arbitrary precision types is also highly innaccurate.

Argues for a counterexample-guided approach. Given some input formula
φ, they construct an underapproximation φ, in which each variable is
modeled using only a subset of the bits specified in the source program.
This construction is performed in such a way that if φ is satisfiable, then φ
is satisfiable. However, they are not equisatisfiable: if φ is unsatisfiable, φ
may still be satisfiable. In this case, an unsatisfiable core is emitted, which
is used to generate an overapproximation φ. This overapproximation is
based on only a subset of the clauses in φ. If φ is unsatisfiable, then φ is
also unsatisfiable. If not, then φ is refined by increasing, for at least one
bit-vector variable, the number of bits modeled. Given that the domain
is finite, termination is guaranteed. In the worst case, the original query
φ will be run directly.

17



While this process may seem complex, it is very efficient when either the
satisfiability or unsatisfiability of the input query φ can be reasoned about
using only a small subset of the bits needed to model φ directly.

• Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, October
1979

Original paper discussing the Nelson-Oppen technique for combining solvers
for theories with certain restrictions in a sound and complete manner. It is
a requirement that each theory include equality, as it is used as the means
of communication between theories. The basic idea is to first purify the
input formula so that each atom involves only a single theory. This way,
theories can be reasoned about separately. Next, using a particular the-
ory Ti across the formula, equality constraints within Ti are discovered. If
the formula is found to be unsatisfiable, then the whole formula under all
theories is unsatisfiable. If not, then the additional equality constraints
which have been learned are passed onto the other theories, and the pro-
cess repeated. Once we reach a point where no more equalities can be
propagated, the whole formula must be satisfiable, and any assignments
made are returned.

This process only works if the input theories are convex, which intuitively
means that for a series of disjunctions, if the series is implied then it
must be the case that at least one of the disjunctions are implied. This is
not always true, as with the non-convex theory of integer arithmetic, as
illustrated through the formula below:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ (x3 = 1 ∨ x3 = 2) (1)

The above formula implies neither x3 = 1 nor x3 = 2 individually, but
rather x3 = 1 ∨ x3 = 2 as a whole. To handle such non-convex theories,
case-splitting is required at such points. Using again the above example,
a case for x3 = 1 would be propagated, and a second case where x3 = 2
would be propagated. If either case is satisfiable, then the formula as a
whole is satisfiable. However, if all are unsatisfiable (as with this example),
then the formula as a whole is unsatisfiable.

Only equalities ever need to be propagated between theories. If any theory
discoveres an inequality that conflicts with some propagated equality, then
it will make the algorithm terminate with an unsatisfiable result.

• Leonardo de Moura and Nikolaj Bjørner. Model-based theory combina-
tion. Electron. Notes Theor. Comput. Sci., 198(2):37–49, May 2008

A more modern way of combining theories than pure Nelson-Oppen [40],
used by Z3 [19]. This is based on the observation that for most queries, the
number of inconsistencies within a theory is much bigger than the number

18



of inconsistencies between theories. For a given theory, all equalities that
hold in the model are propagated, even if they are not implied by the
model. While these can be invalidated later forcing backtracking, this is
rare. As such, substantial performance benefits are seen.

• Dejan Jovanović and Clark Barrett. Being careful about theory combina-
tion. Form. Methods Syst. Des., 42(1):67–90, February 2013

The basic idea is to add to the Nelson-Oppen [40] algorithm an equal-
ity propagator and a care function. The equality propagator determines
for a particular theory which equalities and disequalities are implied over
interface variables, where interface variables are used to communicate be-
tween theories. The care function determines which of the equalities and
disequalities are necessary for maintaining the satisfiability of a given for-
mula.

• Cesare Tinelli. A dpll-based calculus for ground satisfiability modulo the-
ories. In Proceedings of the European Conference on Logics in Artificial
Intelligence, JELIA ’02, pages 308–319, London, UK, UK, 2002. Springer-
Verlag

Most theory-specific work deals with non-disjunctive queries, relying on
other techniques to handle disjunctions. They develop a calculus that
models DPLL [16, 17], and show that essentially all heuritsics surround-
ing DPLL naturally fit into this calculus. They then introduce DPLL(T),
which applies DPLL to a specific theory. The calculus for DPLL(T) is
the same as for DPLL, except that operations describing whether or not
certain literals are implied by the current set of assignments are all theory-
specific. The empty theory in this context refers to DPLL (i.e. DPLL(T)
instantiated without a theory and with Σ being a set of propositional
variables). The interesting part about this formulation is that it makes
explicit which heuristics are possible given a particular theory: certain op-
erations for heuristics become intractable or even undecidable depending
on the theory at hand. The empty clause refers to a conflict.

• Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-
icz, and Roberto Sebastiani. A sat based approach for solving formulas
over boolean and linear mathematical propositions. In Proceedings of the
18th International Conference on Automated Deduction, CADE-18, pages
195–210, London, UK, UK, 2002. Springer-Verlag

Discusses a basic naive lazy encoding, wherein original formulas are con-
verted into propositional abstractions. To illustrate, the first formula be-
low has been abstracted into propositional logic in the separate formula:

x1 = x2 ∧ (x2 6= x3 ∨ x3 = x4) (1)

e1 ∧ (e2 ∨ e3) (2)

19



If the abstraction is unsatisfiable, then the original formula is unsatisfiable.
If the abstraction is satisfiable, then it is mapped back to the original
formula, where we determine if the conjunction of the returned values is
satisfiable in the logic. Going along with the example above, this means
checking the satisfiability of the formula below, assuming that the SAT
solver used the assignment true for all variables:

x1 = x2 ∧ x2 6= x3 ∧ x3 = x4

In this case, the above statement is satisfiable. If this were not satisfiable,
then we could generate a SAT lemma stating that this assignment cannot
be true (i.e. conjoin the lemma ¬e1 ∨ ¬e2 ∨ ¬e3). This added lemma is
referred to as a blocking clause. We can also be more intelligent about
forming this clause to make it more minimal, but such is an optimization.

• Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and
sat modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to dpll(t). J. ACM, 53(6):937–977, November 2006

Discusses theory propagation. Proposes an initial calculus that is essen-
tially the same as in [59]. On top of this they add components to their
calculus for non-chronological backtracking [56], conflict-driven learning,
and restarts.

Divides the handling of different theories into eager and lazy approaches.
Eager approaches perform a direct translation to SAT. While these are
straightforward, one needs to prove that the translation preserves the orig-
inal semantics. Additionally, these tend to see poor performance. The ba-
sic idea behind lazy techniques is to develop theory-specific direct solvers
which do not handle disjunction, and then solve the original query in DNF
form. Of course, due to the translation into DNF, exponential blowup is
both possible and common. Mentions the technique in [2], and notes some
inefficiencies.

They endorse DPLL(T), saying that it combines the advantages of both
the eager and lazy approaches. With theory propagation, whenever a new
assignment is made, a theory is asked to provide all assignments which
are consequences of the given assignment. This may trigger additional
rounds of theory propagation, in much the same manner as binary con-
straint propagation (BCP). After performing theory propagation, BCP is
performed, which may trigger further rounds of theory propagation. If a
conflicting clause is ever discovered, then non-chronological backtracking
is performed (i.e. backjumping). As usual, we can learn binary lemmas
via backjumping.

At least at the time, this technique was a substantial improvement over
all contenders, winning first place in an SMT competition in all categories
where they had a solver for the category (four in total).

20



References

[1] W. Ackermann. Solvable cases of the decision problem. Studies in logic and
the foundations of mathematics. North-Holland Pub. Co., 1954.

[2] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-
icz, and Roberto Sebastiani. A sat based approach for solving formulas over
boolean and linear mathematical propositions. In Proceedings of the 18th
International Conference on Automated Deduction, CADE-18, pages 195–
210, London, UK, UK, 2002. Springer-Verlag.

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. A new encoding
and implementation of not necessarily closed convex polyhedra. In UNI-
VERSITY OF SOUTHAMPTON, page 161. Publications, 2003.

[4] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slam
and static driver verifier: Technology transfer of formal methods inside
microsoft. In IFM, pages 1–20. Springer, 2004.

[5] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Proceedings of the 8th international SPIN
workshop on Model checking of software, SPIN ’01, pages 103–122, New
York, NY, USA, 2001. Springer-Verlag New York, Inc.

[6] Bernard Botella, Arnaud Gotlieb, and Claude Michel. Symbolic execu-
tion of floating-point computations: Research articles. Softw. Test. Verif.
Reliab., 16(2):97–121, June 2006.

[7] Randal E. Bryant, Steven German, and Miroslav N. Velev. Exploiting
positive equality in a logic of equality with uninterpreted functions. pages
470–482. Springer-Verlag, 1999.

[8] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan Brady. Deciding bit-vector arithmetic with abstrac-
tion. In Proceedings of the 13th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’07, pages
358–372, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with tran-
sitivity constraints. ACM Trans. Comput. Logic, 3(4):604–627, October
2002.

[10] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX conference on Operating systems design
and implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008.
USENIX Association.

21



[11] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. Exe: automatically generating inputs of death. In
Proceedings of the 13th ACM conference on Computer and communications
security, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[12] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu,
Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for
software testing in practice: preliminary assessment. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11, pages
1066–1071, New York, NY, USA, 2011. ACM.

[13] Liqian Chen, Antoine Min, Ji Wang, and Patrick Cousot. Interval poly-
hedra: An abstract domain to infer interval linear relationships. In Jens
Palsberg and Zhendong Su, editors, SAS, volume 5673 of Lecture Notes in
Computer Science, pages 309–325. Springer, 2009.

[14] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[15] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dy-
namic symbolic execution for invariant inference. In Proceedings of the 30th
international conference on Software engineering, ICSE ’08, pages 281–290,
New York, NY, USA, 2008. ACM.

[16] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[17] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, July 1960.

[18] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination.
Electron. Notes Theor. Comput. Sci., 198(2):37–49, May 2008.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Pro-
ceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[20] Voler Diekert. Makanin’s algorithm. In Algebraic Combinatorics on Words,
volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge
University Pree, 2002.

[21] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input
generation for database applications. In Proceedings of the 2007 inter-
national symposium on Software testing and analysis, ISSTA ’07, pages
151–162, New York, NY, USA, 2007. ACM.

22



[22] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Car-
los Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for
dynamic detection of likely invariants. In Science of Computer Program-
ming, 2006.

[23] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and ar-
rays. In Proceedings of the 19th international conference on Computer aided
verification, CAV’07, pages 519–531, Berlin, Heidelberg, 2007. Springer-
Verlag.

[24] Patrice Godefroid. Compositional dynamic test generation. In Proceedings
of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’07, pages 47–54, New York, NY, USA,
2007. ACM.

[25] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM.

[26] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation, PLDI ’05,
pages 213–223, New York, NY, USA, 2005. ACM.

[27] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[28] Patrice Godefroid and Daniel Luchaup. Automatic partial loop summariza-
tion in dynamic test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 23–33,
New York, NY, USA, 2011. ACM.

[29] Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample driven
refinement for abstract interpretation. In Proceedings of the 12th inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’06, pages 474–488, Berlin, Heidelberg, 2006.
Springer-Verlag.

[30] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun.
jfuzz: A concolic whitebox fuzzer for java. In Ewen Denney, Dimitra Gi-
annakopoulou, and Corina S. Pasareanu, editors, NASA Formal Methods,
volume NASA/CP-2009-215407 of NASA Conference Proceedings, pages
121–125, 2009.

[31] Dejan Jovanović and Clark Barrett. Being careful about theory combina-
tion. Form. Methods Syst. Des., 42(1):67–90, February 2013.

23



[32] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2008.

[33] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan
De Halleux. Flopsy: search-based floating point constraint solving for sym-
bolic execution. In Proceedings of the 22nd IFIP WG 6.1 international con-
ference on Testing software and systems, ICTSS’10, pages 142–157, Berlin,
Heidelberg, 2010. Springer-Verlag.

[34] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[35] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In
Proceedings of the Third Asian conference on Programming Languages and
Systems, APLAS’05, pages 119–134, Berlin, Heidelberg, 2005. Springer-
Verlag.

[36] Claude Michel. Exact projection functions for floating point number con-
straints (pdf). In AMAI, 2002.

[37] Antoine Miné. Relational abstract domains for the detection of floating-
point run-time errors. CoRR, abs/cs/0703077, 2007.

[38] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. In Proceedings of
the 38th annual Design Automation Conference, DAC ’01, pages 530–535,
New York, NY, USA, 2001. ACM.

[39] Patricia Mouy, Bruno Marre, Nicky Willams, and Pascale Le Gall. Gener-
ation of all-paths unit test with function calls. In Proceedings of the 2008
International Conference on Software Testing, Verification, and Validation,
ICST ’08, pages 32–41, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[40] Greg Nelson and Derek C. Oppen. Simplification by cooperating deci-
sion procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, October
1979.

[41] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and
sat modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to dpll(t). J. ACM, 53(6):937–977, November 2006.

[42] Jeremy W. Nimmer and Michael D. Ernst. Static verification of dynamically
detected program invariants: Integrating daikon and esc/java. Electr. Notes
Theor. Comput. Sci., 55(2):255–276, 2001.

24



[43] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of pro-
gram specifications. In Proceedings of the 2002 ACM SIGSOFT inter-
national symposium on Software testing and analysis, ISSTA ’02, pages
229–239, New York, NY, USA, 2002. ACM.

[44] Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static
checking: an empirical evaluation. SIGSOFT Softw. Eng. Notes, 27(6):11–
20, November 2002.

[45] Amir Pnueli, Yoav Rodeh, Ofer Strichmann, and Michael Siegel. The small
model property: how small can it be? Inf. Comput., 178(1):279–293,
October 2002.

[46] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative study
of programmer-written and automatically inferred contracts. In Proceedings
of the eighteenth international symposium on Software testing and analysis,
ISSTA ’09, pages 93–104, New York, NY, USA, 2009. ACM.

[47] J. Richard Bchi and Steven Senger. Definability in the existential theory
of concatenation and undecidable extensions of this theory. Mathematical
Logic Quarterly, 34(4):337–342, 1988.

[48] Raul Santelices and Mary Jean Harrold. Exploiting program dependencies
for scalable multiple-path symbolic execution. In Proceedings of the 19th
international symposium on Software testing and analysis, ISSTA ’10, pages
195–206, New York, NY, USA, 2010. ACM.

[49] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song.
Loop-extended symbolic execution on binary programs. In Proceedings of
the eighteenth international symposium on Software testing and analysis,
ISSTA ’09, pages 225–236, New York, NY, USA, 2009. ACM.

[50] Todd W. Schiller and Michael D. Ernst. Reducing the barriers to writing
verified specifications. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications,
OOPSLA ’12, pages 95–112, New York, NY, USA, 2012. ACM.

[51] Christoph Scholl, Stefan Disch, Florian Pigorsch, and Stefan Kupferschmid.
Computing optimized representations for non-convex polyhedra by detec-
tion and removal of redundant linear constraints. In Proceedings of the 15th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009,, TACAS ’09, pages 383–
397, Berlin, Heidelberg, 2009. Springer-Verlag.

[52] Koushik Sen. Scalable automated methods for dynamic program analysis.
In PhD Dissertation, 2006.

[53] Robert E. Shostak. An algorithm for reasoning about equality. Commun.
ACM, 21(7):583–585, July 1978.

25



[54] J.H. Siddiqui and S. Khurshid. Parsym: Parallel symbolic execution. In
Software Technology and Engineering (ICSTE), 2010 2nd International
Conference on, volume 1, pages V1–405 –V1–409, oct. 2010.

[55] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic execution
using ranged analysis. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications,
OOPSLA ’12, pages 523–536, New York, NY, USA, 2012. ACM.

[56] Joao P. Marques Silva and Karem A. Sakallah. Grasp - a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM inter-
national conference on Computer-aided design, ICCAD ’96, pages 220–227,
Washington, DC, USA, 1996. IEEE Computer Society.

[57] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. Under-
standing user understanding: determining correctness of generated pro-
gram invariants. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 188–198, New York, NY,
USA, 2012. ACM.

[58] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation
for .net. In Proceedings of the 2nd international conference on Tests and
proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[59] Cesare Tinelli. A dpll-based calculus for ground satisfiability modulo the-
ories. In Proceedings of the European Conference on Logics in Artificial
Intelligence, JELIA ’02, pages 308–319, London, UK, UK, 2002. Springer-
Verlag.

[60] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and
Flavio Lerda. Model checking programs. Automated Software Engg.,
10(2):203–232, April 2003.

[61] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring
better contracts. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 191–200, New York, NY, USA, 2011.
ACM.

[62] Doran K. Wilde. A library for doing polyhedral operations. Technical
report, 1993.

[63] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra:
a framework for generating object-oriented unit tests using symbolic exe-
cution. In Proceedings of the 11th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’05, pages
365–381, Berlin, Heidelberg, 2005. Springer-Verlag.

[64] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson En-
gler. Automatically generating malicious disks using symbolic execution.

26



In Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP
’06, pages 243–257, Washington, DC, USA, 2006. IEEE Computer Society.

27


