COMP 490/L Lecture |

Kyle Dewey

Disclaimer

® This is a research-oriented senior
design course

® If you are looking for the traditional
industry-oriented senior design
course, you are in the wrong class

® Same time: Prof.Wiegley in |D 2213

About Me

® My research: automated test case
generation and CS education

® This is my third semester at CSUN

® First time teaching this course

About this Class

® First time this version of the class is taught

® See something wrong! Want something
improved? Email me about it!

(kyle.dewey@csun.edu)

® | generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

® This guy sucks.
® This class is boring.

® This material is useless.

-1 can’t do anything in response to this

Good Feedback

This guy sucks, | can’t read his writing.
This class is boring, it’s way too slow.

This material is useless, | don’t see how it
relates to anything in reality.

| can’t fix anything if | don’t know what'’s
wrong

-1 can actually do something about this!

Target Audience

-Maybe you're interested in graduate school...

Target Audience

-Maybe you're interested in academia...

Target Audience

Fuzzing the Rust Typechecker Using CLP

Kyle Dewey

Jared Roesch

Ben Hardekopf

University of California, Santa Barbara
{kyledewey, jroesch, benh}@cs.ucsb.edu

Abstract—Language fuzzing is a bug-finding technique for
testing compilers and interpreters; its effectiveness depends upon
the ability to automatically generate valid programs in the
language under test. Despite the proven success of language
fuzzing, there is a severe lack of tool support for fuzzing
statically-typed languages with advanced type systems because
existing fuzzing techniques cannot effectively and automatically
generate well-typed programs that use sophisticated types. In
this work we describe how to automatically generate well-typed
programs that use sophisticated type systems by phrasing the
problem of well-typed program generation in terms of Constraint
Logic Programming (CLP). In addition, we describe how to
specifically target the typechecker implementation for testing,
unlike all existing work which ignores the typechecker. We focus
on typechecker precision bugs, soundness bugs, and consistency
bugs. We apply our techniques to Rust, a complex, industrial-
strength language with a sophisticated type system.

I. INTRODUCTION

The central idea of a language fuzzer is to automatically
generate valid programs in a given language, which are then
fed to a language implementation under test in order to check
for crashes or miscompilations. This idea is well-established
as a confidence-building and bug-finding technique for com-

a logical proposition, we can straightforwardly encode types
and type systems using CLP. Because programs are proofs,
querying the CLP engine whether a type is “true” corresponds
to generating a well-typed program. The nondeterminism in-
herent in CLP languages means that when there are multiple
possible proofs (i.e., multiple well-typed programs) the CLP
engine can easily generate all possible solutions—that is, it can
output as many well-typed programs as we desire. This method
for automated program generation allows us to take advantage
of long-standing existing implementations of CLP [7], [8] and
community wisdom about effectively using CLP [9].

Our second advance describes techniques for specifically
testing typechecker implementations. The three main kinds of
typechecker bugs we target are (1) precision bugs, where the
typechecker conservatively rejects well-behaved programs it
should accept; (2) soundness bugs, where the typechecker op-
timistically accepts potentially ill-behaved programs it should
reject; and (3) consistency bugs, where the typechecker treats
a set of equivalent programs (in terms of being well- or ill-
typed) inconsistently, accepting some while rejecting others.

Testing for precision bugs requires only that we gener-
ate well-typed programs as described previously and then

-But most of all, you're interested in publishing papers
-Papers are a gateway into graduate school and academia, and represent a significant portion (and often the most difficult part) of either one of them

Abstraci
testing com
the ability
language u
fuzzing, th
statically-ty
existing fui
generate w
this work 1
programs 1
problem of
Logic Prog
specifically
unlike all e
on typeche
bugs. We :
strength la

The ce
generate V.
fed to a lai
for crashes
as a confic

Target Audience

Fuzzing the Rust Typechecker Using CLP

Kyle Dewey Jared Roesch

Ben Hardekopf

Finding and Understanding Bugs in C Compilers

Xuejun Yang

Yang Chen

Eric Eide John Regehr

University of Utah, School of Computing
{ixyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also

to silently generate wrong code when presented with valid input.

In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

ot ioc and Subiort T NS (Calhunre Fnoineor.

I int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;
4 return x > y;

5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. Atall optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched: the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-

-But most of all, you're interested in publishing papers
-Papers are a gateway into graduate school and academia, and represent a significant portion (and often the most difficult part) of either one of them

Target Audience

Fuzzing the Rust Typechecker Using CLP

Kyle Dewey Jared Roesch

Ben Hardekopf

Finding and Understanding Bugs in C Compilers

Abstraci Xuejun Yang Yang Chen Eric Eide John Regehr .
testing com o
the abilit B H H
paage & Korat: Automated Testing Based on Java Predicates
fuzzing, th
statically-ty
existing fui . . i
generate w Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov
this work 1 MIT Laboratory for Computer Science
programs 1 Abstrac 200 Technology Square
problem of Compiler: Cambridge, MA 02139 USA
Logic Prog we create {chandra khurshid marinov } @lcs.mit.edu
specifically spent thre
unlike all € e report
on typeche developer
bugs. We ¢ o silently
strength lai [y this pa
e (:; ()::: l':ul ABSTRACT cate (i.e., a method that returns a boolean) from the method’s pre-
state of t1 This paper presents Korat, a novel framework for automated testing condition. One of the key contributions of Korat is a technique for
generates of Java programs. Given a formal specification for a method, Korat automatic test case generation: given a predicate, and a bound on
The ce |, gefine¢ uses the method precondition to automatically generate all (noni- the size of its inputs, Korat generates all nonisomorphic inputs for
generate Vi, automa somorphic) test cases up to a given small size. Korat then executes which the predicate returns true. Korat uses backtracking to sys-
fed to alai collection the method on each test case, and uses the method postcondition as tematically explore the bounded input space of the predicate. Korat
for crashes have foun atest oracle to check the correctness of each output. generates candidate inputs and checks their validity by invoking
as a confic ot the predicate on them. Korat monitors accesses that the predicate

-But most of all, you're interested in publishing papers

-Papers are a gateway into graduate school and academia, and represent a significant portion (and often the most difficult part) of either one of them

Target Audience

Fuzzing the Rust Typechecker Using CLP

Kyle Dewey Jared Roesch Ben Hardekopf

Finding and Understanding Bugs in C Compilers

. ti'ibstma Xuejun Yang Yang Chen Eric Eide John Regehr .

esting com

e oy Korat: Automated Testing Based on Java Predicates

fuzzing, th

statically-ty

;ﬁ;’;’fgﬁ: Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov

this work 1 . .

programs | Abstrac DART: Directed Automated Random Testing
roblem o Compiler:

Eogic Prog we c‘:clkllc

specifically spent thre

unlike all ¢ we report Patrice Godefroid Nils Klarlund Koushik Sen
on typeche developer Bell Laboratories, Lucent Technologies Computer Science Department
:tligflgt‘l:'ﬁ i:l ;<: :llll’c“;al) {god.klarlund}@bell-labs.com University of Illinois at Urbana-Champaign
n this pa ksen@cs.uiuc.edu
of our bu ABS]
state of t Thispaj

generates of Java
The ce \definec uses the
generate Vi, automa somorpl
fed to alai collection the metl Abstract unit testing is so hard and expensive to perform that it is rarely
for crashes have foun properly. Indeed, in order to be able to execute and test a comg
in isolation, one needs to write test driver/harness code to sir

e

2testor we present a new tool, named DART, for automatically testing soft-
as a confic ware that combines three main techniques: (1) automated extrac-

Cotoonvie

-But most of all, you're interested in publishing papers
-Papers are a gateway into graduate school and academia, and represent a significant portion (and often the most difficult part) of either one of them

Target Audience

Fuzzing the Rust Typechecker Using CLP

Kyle Dewey Jared Roesch Ben Hardekopf

Finding and Understanding Bugs in C Compilers

. t{QbsMCI Xuejun Yang Yang Chen Eric Eide John Regehr -
esting com

e oy Korat: Automated Testing Based on Java Predicates
fuzzing, th
sut:tica%ly-t)
existing fui
generate w
this work 1 . .
programs | Abstrac DART: Directed Automated Random Testing
roblem o “ompiler:

Eogic Prog fvc c‘:clillc

specifically spent thre

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov

unlike all ¢ we report Patrice Godefroid Nils Klarlund Koushik Sen
on typeche deve
bugs. We ¢ 19 sil 1 M
strength 1oy o b Fuzzing with Code Fragments
of ou
state
The ce genel
generate V. :',)v‘.ﬁ Christian Holler Kim Herzig Andreas Zeller
fedtoala colle Mozilla Corporation™ Saarland Universi Saarland Universi
f h p
or crashes have R . . .
as 2 confic choller@mozilla.com herzig @cs.uni-saarland.de zeller@cs.uni-saarland.de
8

Cote

-But most of all, you're interested in publishing papers
-Papers are a gateway into graduate school and academia, and represent a significant portion (and often the most difficult part) of either one of them

Course Design

Traditional Senior Design

-To get a better sense of what this class is, and how it compares to the usual senior design, let's first explain what the usual senior design process looks
like

-We have students in the class...

Traditional Senior Design

=0 >0 >
>0 >0 >

Traditional Senior Design

T 1 onin

-...and these students pitch / select projects to work on.

Traditional Senior Design

sssss

-Students then use industry-standard techniques (learned in the course)...

-...to turn the project into a product

Traditional Senior Design

Traditional Senior Design

X X\‘ » RolE] .\

WW

Research-based Senior Design (Expected Typical)

-The research-based senior design looks a little different
-This is showing how I'm expecting things to go for most students (variations are possible; students can pitch their own projects to me, but talk to me
first)

Traditional Senior Design

® O
A~ onine.

Lot

_—r R J \»
SCRUM
Sprint Backiog.
~ T

METHODOLOGY

_:) e’ .5 =] on)/ ———
o Qs ECs B

NN

Research-based Senior Design (Expected Typical)
® o

\ /\

-In this senior design, we have faculty sponsors

Traditional Senior Design

X X\‘ » Rolsx .\

o
) W/
Research-based Senior Design (Expected Typical)

Prigject -2

-Faculty sponsors pitch projects
-Reasoning: it's unexpected that students would know coming in what makes a viable research project
-Similarly, it's practically necessary to have a technical expert in the area in order to make progress when you're first starting out

Traditional Senior Design

X X\‘ » Rolsx .\

WW

-Students select faculty sponsors and corresponding projects
-The same faculty sponsor may sponsor multiple projects and multiple students, but students will only work on one project

Traditional Senior Design

W X g_a ' . \ nnnnnnnnnnnnnn P
,E 1 E () e

_—v ST { \»

SCRUM
METHODOLOGY F
\ y § T

D3, A K=" r/‘ eeeee D
KU 18 i= Gle

[] [] SN ES gl ._b | \

rRX—

ﬁ’ v Prliect
0

|]

-Faculty sponsor/student groups will then work with an iterative process to progress on the research

-This iterative process is partially defined by the class itself, and partially defined by the faculty sponsor

-The class itself will focus on more mechanical, generic aspects of research (e.g., technical writing and presentation skills), whereas individual faculty
sponsors will get into domain-specific things

Traditional Senior Design

e o _
A~ onine.

Lot

/ Sprint Review Meeting J \>
SCRUM
Sprint Backiog
Sprint Retrosp

METHODOLOGY

\) - =] ' 1 Sprint Planning Meeting
| | : I > e L A r Scope - Design Usable
® 4 J)J\@;\ E")J ; e&[*)l

Research-based Senior Design (Expected Typical)

-End (somewhat stretch) goal: each project delivers a publishable unit at the end
-Exactly how publishable this unit will be largely depends on the projects themselves. Research is unpredictable by its very nature.

Comparing the Two

® Similar: | will mostly stay out of your way
while you get work done

® Frequent meetings are so you can
block out time to work

e o o0
e Different: faculty sponsors W W W
® Will become your primary contacts

® W/ill dictate project direction (and
most of your grade)

Skills You Will Learn

How to read papers
How to maintain research notes
How to write papers

How to orally present research, especially
to a general audience

Fair Warning: This is Hard

® Paper-reading instincts will probably fail you

® Question: how would you read a paper?
® Tons of reading for even basic understanding
® Page maximums instead of minimums

® English classes usually train bad habits

-1 hand you a paper. How will you read it? You don't have to answer out loud.

-1 read the first paper my advisor gave me over a dozen times over the course of a month

-1 only understood about 10% of it at best at the time, and a full two years before | understood it about 70%
-For nearly two years, my adviser threw out everything | wrote as unsalvageably bad.

Syllabus

Building Up to Projects

® Making a well-informed decision about a
project will require you to read papers

® Therefore, we need to go over how to best
read papers before we can get into projects

Introduction to Reading
Papers

Metaphor: an image coming into view

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

%

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

Inefficient Reading

Very carefully read from start to finish.

Inefficient?

® Problem: no idea what the big picture is
® Will not get an idea until you're done

® Rarely will you need to know every detail,
but this guarantees you'll learn them all

® This is wasted time

Efficient Reading

Multiple, shallow passes.

Efficient Reading

Multiple, shallow passes.

First pass

-Your first pass gives you something like this

-You can't tell what it is, but there is definitely a lot of blue.

Efficient Reading

Multiple, shallow passes.

First pass

Previous inefficient

-If you're doing this first pass right, you've spent less time than with the best of the previous method
-You are _already seeing a difference_ between the two. In fact, the first was misleading - there is no blue in it!

Efficient Reading

Multiple, shallow passes.

Second pass

-Not everything is blue, but most of it is

Efficient Reading

Multiple, shallow passes.

Third pass

-You can probably see enough details to make out that this is a car
-Depending on the reasons why you're reading the paper, this might be enough!

Efficient Reading

Multiple, shallow passes.

Fourth pass

-You can do more passes here, and each time it gets clearer
-Whether or not more passes is done all depends on what you need

Efficient Reading

Multiple, shallow passes.

" —t

Fifth pass

-Diminishing returns starts becoming apparent

Efficient Reading

Multiple, shallow passes.

Sixth pass

-Diminishing returns starts becoming apparent

Efficient Reading

Multiple, shallow passes.

Seventh pass

Reading Papers

® First question: do | have to read this paper?

® Generally good reading order: title,
abstract, conclusions, figures with captions

® Then skim the paper
® Get a general sense of what is going on
® May need to repeat this

® Then in-depth reading

-With first question, the answer is often no. Usually you're looking for gems in a sea of information, so you're trying to get a "no" answer as quickly as
possible.

Assignment: First Paper

® Read "The Structure of the "THE'-
Multiprogramming System”, by Edsger W.
Dijkstra

® Take notes, and write a one-
paragraph summary of the paper

® We will discuss this in class on VWWednesday

