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Language Fuzzing

• Automatic program generation technique 
for testing compilers and interpreters

• Can be used to build confidence in a whole 
implementation or in parts of an 
implementation
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State of the Art: 
Stochastic Grammars

First take a grammar...
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State of the Art: 
Stochastic Grammars

...then annotate with probabilities associated
with the likelihood of generating a particular production
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Example Derivation
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Stochastic Weaknesses

• Difficult to focus in programs that do 
specific things (e.g., expressions that 
evaluate to 7)

• Probabilities only allow for very coarse-
grained configuration

• Hard to increase confidence in specific 
implementation components

5



Enter Constraint Logic 
Programming (CLP)
• Allows for the specification of relational and 

arithmetic constraints on symbolic variables

• Can easily encode grammars

• Can specify generators focusing in on both 
syntactic and semantic program properties

•Generalizes stochastic grammars
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Encoding the Grammar

arithExp(num(N)) :-
  INTMIN #=< N,
  N #=< INTMAX.
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Encoding the Grammar

arithExp(add(E1, E2)) :-
  arithExp(E1),
  arithExp(E2).

arithExp(num(N)) :-
  INTMIN #=< N,
  N #=< INTMAX.
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Making it Stochastic

arithExp(add(E1, E2)) :-
  arithExp(E1),
  arithExp(E2).

arithExp(num(N)) :-
  INTMIN #=< N,
  N #=< INTMAX.
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Making it Stochastic

arithExp(num(N)) :-
  maybe(0.6),
  INTMIN #=< N,
  N #=< INTMAX.

arithExp(add(E1, E2)) :-
  arithExp(E1),
  arithExp(E2).
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Generation

With the query:

:- arithExp(E), writeln(E), fail.

...E is nondeterministically bound to all productions of
the grammar.
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Generalization: Expressions 
that Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
  eval(E1, N1),
  eval(E2, N2),
  N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
  arithExp(E),
  eval(E, 7).
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Application
• Applied to generating JavaScript programs

• Four generators developed that make four 
different kinds of programs:

• js-err: Programs that avoid runtime type 
errors

• js-overflow: Programs that overflow

• js-inher: Programs that use prototype-based 
inheritance

• js-withclo: Programs that intermix 
JavaScript’s with and closures in specific ways 11



Evaluation

• Interested in measuring the rate at which 
these generators can generate programs 
of interest relative to stochastic 
techniques

• Hypothesis: these custom generators can 
generate interesting programs at a much 
faster rate than stochastic techniques
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Results
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Generator Stochastic-
based

CLP-based CLP / 
Stochastic

js-err 9,880 37,759 3.8

js-overflow 123 958 7.8

js-inher 0 126,194 ∞

js-withclo 0.04 125,901 3,147,525

In programs per second



See Paper for Details...

• Alternate search strategies

• Different type systems

• Embedded CLP DSLs for fuzzing

• Total and unique stochastic programs 
generated
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Conclusions

• Stochastic grammars generally cannot focus 
in on the generation of specific programs

• Our CLP-based approach generalizes 
stochastic grammars, allowing for targeted 
generation
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