Language Fuzzing Using
Constraint Logic
Programming

Kyle Dewey, Jared Roesch, Ben Hardekopf

Language Fuzzing

® Automatic program generation technique
for testing compilers and interpreters

® Can be used to build confidence in a whole
implementation or in parts of an
implementation

State of the Art:
Stochastic Grammars

First take a grammar...

e € ArithExp :=n €N | e; + e

State

of the Art:

Stochastic Grammars

First take a grammar...

e € ArithExp

=n€eN | e+ e

State of the Art:
Stochastic Grammars

First take a grammar...

e € ArithExzp :=|n € N| | e1 + e2

State of the Art:
Stochastic Grammars

First take a grammar...

e € ArithExp :=n €N |

State of the Art:
Stochastic Grammars

...then annotate with probabilities associated
with the likelihood of generating a particular production

e C A’r"ithEajp e N‘ S 62

Example Derivation

0.4

e € ArithExp == n € Nwl e1 + e

Example Derivation

0.4

e & ATithESIJp =n & N%I €1 + €92

Example Derivation

0.4

e € ArithEzp ::= | e1+ e

Stochastic Weaknesses

® Difficult to focus in programs that do
specific things (e.g., expressions that
evaluate to 7)

® Probabilities only allow for very coarse-
grained configuration

® Hard to increase confidence in specific
implementation components

Enter Constraint Logic
Programming (CLP)

® Allows for the specification of relational and
arithmetic constraints on symbolic variables

® Can easily encode grammars

® (Can specify generators focusing in on both
syntactic and semantic program properties

® Generalizes stochastic grammars

Encoding the Grammar

e & AT‘ithEﬁEp =n €N ‘ €1 + €92

Encoding the Grammar

e € ArithExp ::=

n €N

| e1+ e

Encoding the Grammar

e & AT"ithEﬁEp —=n €N I €1 + €92

arithExp (num (N)) :-
INTMIN #=< N,
N #=< INTMAX.

Encoding the Grammar

e & AT"ithEﬁEp =n €N I €1 + €92

arithExp (num (N)) :-
INTMIN #=< N,
N #=< INTMAX.

Encoding the Grammar

e & AT‘ithEﬁEp =n €N ‘ €1 + €92

arithl

X (!

arithl

arithExp (num(N))
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,

w 1),

X (!

2) .

Making it Stochastic

0.4

e € ArithExp ::=n € Nl e1 + eo

arithExp (num (N)) :-
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,
arithExp (E1l),
arithExp (E2) .

Making it Stochastic

0.4

e € ArithExp :=n € N%l e1 + e2

arithExp (num(N)) :-
mavybe (0.0),
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,
arithExp (E1l),
arithExp (E2) .

(GGeneration

With the query:

:— ari1thExp(E), writeln(E), fail.

...E. is nondeterministically bound to all productions of
the grammar.

Generalization: Expressions
that Evaluate to /

eval (num (N) ,

eval (add (E1,
eval (E1, N1),
eval (EZ2, NZ2),
N #= N1 + N2.

same arithExp from before
evalsTo/ (E
arithkh
eval (E

Application

® Applied to generating JavaScript programs

® Four generators developed that make four
different kinds of programs:

® js-err:Programs that avoid runtime type
errors

® js-overflow:Programs that overflow

® js-inher:Programs that use prototype-based
inheritance

® js—-withclo:Programs that intermix
JavaScript’s with and closures in specific ways |,

Evaluation

® |nterested in measuring the rate at which
these generators can generate programs
of interest relative to stochastic
techniques

® Hypothesis: these custom generators can
generate interesting programs at a much
faster rate than stochastic techniques

Results

In programs per second

Generator

Stochastic-
based

CLP-based

CLP/
Stochastic

Jjs—err

2,880

37,759

3.8

Jjs—overflow

123

958

/.8

Js—1nher

126,194

Js-withclo

125,901

3,147,525

See Paper for Details...

Alternate search strategies
Different type systems

Embedded CLP DSLs for fuzzing

Total and unique stochastic programs
generated

Conclusions

® Stochastic grammars generally cannot focus
in on the generation of specific programs

® Our CLP-based approach generalizes
stochastic grammars, allowing for targeted
generation

