
Language Fuzzing Using
Constraint Logic

Programming
Kyle Dewey, Jared Roesch, Ben Hardekopf

Language Fuzzing

• Automatic program generation technique
for testing compilers and interpreters

• Can be used to build confidence in a whole
implementation or in parts of an
implementation

1

State of the Art:
Stochastic Grammars

First take a grammar...

2

State of the Art:
Stochastic Grammars

First take a grammar...

2

State of the Art:
Stochastic Grammars

First take a grammar...

2

State of the Art:
Stochastic Grammars

First take a grammar...

2

State of the Art:
Stochastic Grammars

...then annotate with probabilities associated
with the likelihood of generating a particular production

3

Example Derivation

e

e1 + e2

e3 + e4 3

1 3 4

Example Derivation

e

e1 + e2

e3 + e4 3

1 3 4

Example Derivation

e

e1 + e2

e3 + e4 3

1 3 4

Stochastic Weaknesses

• Difficult to focus in programs that do
specific things (e.g., expressions that
evaluate to 7)

• Probabilities only allow for very coarse-
grained configuration

• Hard to increase confidence in specific
implementation components

5

Enter Constraint Logic
Programming (CLP)
• Allows for the specification of relational and

arithmetic constraints on symbolic variables

• Can easily encode grammars

• Can specify generators focusing in on both
syntactic and semantic program properties

•Generalizes stochastic grammars

6

Encoding the Grammar

7

Encoding the Grammar

7

Encoding the Grammar

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

7

1
2
3

Encoding the Grammar

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

7

1
2
3

Encoding the Grammar

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

7

1
2
3

4
5
6

Making it Stochastic

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

8

1
2
3

4
5
6

Making it Stochastic

arithExp(num(N)) :-
 maybe(0.6),
 INTMIN #=< N,
 N #=< INTMAX.

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

8

1
2
3
4

5
6
7

Generation

With the query:

:- arithExp(E), writeln(E), fail.

...E is nondeterministically bound to all productions of
the grammar.

9

Generalization: Expressions
that Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

10

1
2
3
4
5

6
7
8
9

Application
• Applied to generating JavaScript programs

• Four generators developed that make four
different kinds of programs:

• js-err: Programs that avoid runtime type
errors

• js-overflow: Programs that overflow

• js-inher: Programs that use prototype-based
inheritance

• js-withclo: Programs that intermix
JavaScript’s with and closures in specific ways 11

Evaluation

• Interested in measuring the rate at which
these generators can generate programs
of interest relative to stochastic
techniques

• Hypothesis: these custom generators can
generate interesting programs at a much
faster rate than stochastic techniques

12

Results

13

Generator Stochastic-
based

CLP-based CLP /
Stochastic

js-err 9,880 37,759 3.8

js-overflow 123 958 7.8

js-inher 0 126,194 ∞

js-withclo 0.04 125,901 3,147,525

In programs per second

See Paper for Details...

• Alternate search strategies

• Different type systems

• Embedded CLP DSLs for fuzzing

• Total and unique stochastic programs
generated

14

Conclusions

• Stochastic grammars generally cannot focus
in on the generation of specific programs

• Our CLP-based approach generalizes
stochastic grammars, allowing for targeted
generation

15

