
Fuzzing the Rust
Typechecker Using CLP

Kyle Dewey, Jared Roesch, Ben Hardekopf

University of California, Santa Barbara

Teaser

• We identify three kinds of bugs that
typecheckers can exhibit

• We describe general techniques for
automatically finding these kinds of bugs

• We apply these ideas to testing the Rust
programming language, and find 14
developer-confirmed bugs

2

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Motivation
• Typecheckers are crucial components in

statically typed languages

• Help ensure programs are correct

• Defend against exploits

P1

P2

Typechecker

P1

P2

3

Motivation
• Problem: typecheckers can be buggy too

• Fail to accept well-typed programs

• Fail to reject ill-typed programs

P1

P2

Typechecker

P2

4

Idea

• Use black-box language fuzzing techniques
to automatically find these bugs, ideally
before they become a problem

P1

P2

Typechecker

P1

P2

5

Existing Work

• Most existing work on language fuzzing
fundamentally applies only to dynamically-
typed languages (e.g., jsfunfuzz)

• Based on performing a random walk over
the language’s grammar, referred to as a
stochastic grammar

6

Stochastic Grammars

7

Stochastic Grammars

7

Stochastic Grammars

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = 1

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = _ _ _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = true _ _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = true && _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = true && true

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = _ _ _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = 1 _ _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = 1 + _

7

Stochastic Grammars
0.3 0.7

0.4 0.4 0.2

e = 1 + true

7

Type Errors

• Dynamic setting - still a valid test!

• Static setting - tests if typechecker correctly
rejects things. Except...

• No ground truth

• Most type errors are trivial

• Most randomly generated programs
contain lots of type errors, which can mask
each other

e = 1 + true

8

Existing Solutions
• All existing solutions that address these concerns

suffer from at least one of the following problems:

• Some generated programs are “accidentally”
ill-typed

• Not all well-typed programs can be generated

• Fundamentally cannot handle the entire type
system

• Highly specific to language being tested

9

Existing Solutions

• In all cases, the typechecker is an adversary
to be overcome in order to test
downstream components

• All implicitly assume the typechecker is
correct

10

Our Approach

Our Approach
• We focus our testing efforts on finding

three specific kinds of typechecker bugs:

• Failure to accept a well-typed program

• Failure to reject an ill-typed program

• Inconsistent behavior on type equivalent
programs

• We have devised general techniques for
finding these three kinds of bugs

11

Viewpoint from
Program Analysis (1)

• Failure to accept a well-typed program is a
precision bug

• While annoying to the programmer,
guarantees provided by the type system are
preserved

12

• Failure to reject an ill-typed program is a
soundness bug

• Silent loss of guarantees provided by the
type system

• Potentially devastating

Viewpoint from
Program Analysis (2)

13

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Finding Precision Bugs

• Intuition: generate guaranteed well-typed
programs

• Any rejected programs indicate bugs

14

Generating Well-Typed
Programs

• We use constraint logic programming (CLP)
for this purpose

• Typing rules can be specified in CLP, and
CLP engines can execute them “backwards”
to generate programs which are well-typed

15

Well-Typed Generation
Example: System F

System F Highlights

• This is the simply-typed lambda calculus...

• Higher-order functions

• ...with parametric polymorphism

• Type variables

• Serves as a simple example

• Despite simplicity, both higher-order
functions and type variables fundamentally
cannot be handled by prior work

16

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Grammar and Types

17

Typing Rules in CLP

typing(Gamma, var(X), T) :-
 lookup(Gamma, X, T).

Typing Rule
CLP Code

18

Typing Rules in CLP

typing(Gamma, var(X), T) :-
 lookup(Gamma, X, T).

Typing Rule
CLP Code

18

Typing Rules in CLP

typing(Gamma, var(X), T) :-
 lookup(Gamma, X, T).

Typing Rule
CLP Code

18

Typing Rules in CLP

typing(Gamma, var(X), T) :-
 lookup(Gamma, X, T).

Typing Rule
CLP Code

18

Typing Rules in CLP

typing(Gamma, var(X), T) :-
 lookup(Gamma, X, T).

Typing Rule
CLP Code

18

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

19

From Typing Rules to a
Generator

• We have implemented a typechecker here

• This can be trivially turned into a generator
of well-typed terms, like so (where ?-
indicates what to execute):

?- typing([], E, T), write(E), fail.

20

From Typing Rules to a
Generator

• We have implemented a typechecker here

• This can be trivially turned into a generator
of well-typed terms, like so (where ?-
indicates what to execute):

?- typing([], E, T), write(E), fail.

20

From Typing Rules to a
Generator

• We have implemented a typechecker here

• This can be trivially turned into a generator
of well-typed terms, like so (where ?-
indicates what to execute):

?- typing([], E, T), write(E), fail.

20

From Typing Rules to a
Generator

• We have implemented a typechecker here

• This can be trivially turned into a generator
of well-typed terms, like so (where ?-
indicates what to execute):

?- typing([], E, T), write(E), fail.

20

Take-Home Point

• This generator of well-typed terms can be
used to find precision bugs in typecheckers

• Since everything generated is well-
typed, if anything is rejected, it indicates
the typechecker under test is buggy
under the particular input

21

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Finding Soundness Bugs

• Intuition: generate ill-typed programs

• If the typechecker accepts any of them,
then we have discovered a bug

• Simple solution: generate syntactically valid
programs, and filter out those that happen
to be well-typed (which occur rarely)

22

Finding Soundness Bugs

• A purely syntactic approach results in fairly
uninteresting tests

• They do not exploit information about
the underlying type system

• Tend to be obviously ill-typed, so
intuitively only the buggiest of
typecheckers would let them through

23

Better Approach

• Generate almost well-typed programs,
which are ill-typed, but in subtle ways

• Intuitively, one simply negates a single
premise of a single typing rule, in a
nondeterministic manner

• Based on developer feedback

24

Almost Well-Typed
Generation Example:

System F

Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T1).

Typing Rule
CLP Code

25

Typing Rules in CLP

Typing Rule
CLP Code

typing(Gamma, app(E1, E2), T2) :-
 typing(Gamma, E1, arrow(T1, T2)),
 typing(Gamma, E2, T3),
 T3 \== T1.

25

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Why Another Type of Bug?

• Theoretically, soundness and precision
covers the entire state space

• Finding all possible precision and soundness
bugs requires a full-blown typechecker
implemented in CLP

• Lots of work

• Depending on the language, ground
truth may be unclear

26

Consistency Bugs

• Advantage: full ground truth is not
necessary, only an understanding of what
constitutes a type equivalent program

• This is generally much simpler

• If the typechecker behaves differently on
type equivalent programs, it indicates a bug

• Both should be either well-typed or ill-
typed

27

Implementing
Consistency Bug Finders

• Basic idea: write a syntax-based generator,
using traditional fuzzing techniques

• Pass the output of this generator through a
series of rewrite rules

• Ensure that both the input and the output
to the rewrite rules behave the same

28

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Why Rust?
• A real language with a rapidly growing user

base (over 3,300 packages available)

• A sophisticated type system with important
guarantees (e.g., memory safety without GC)

• No formal semantics, or even an informal
specification

• Worked closely with Rust development
team

29

Key Rust Type System
Features

• Parametric polymorphism

• Generics

• Typeclasses

• Associated types

• Affine types

• Borrowing (reference types)

30

Testing Methodology

• Handling all of the language with one fuzzer
is extremely difficult

• Simpler approach: develop a series of
fuzzers which handle subsets of the
language

• Use different techniques for each
fuzzer

31

Outline

• Background and motivation

• Finding precision bugs

• Finding soundness bugs

• Finding consistency bugs

• Application to Rust

• Results

Results

• 18 bugs found across all categories

• 14 confirmed by developers

• Includes a specification-level bug, where a
program was legally considered both ill-
typed and well-typed

• This work preceded a massive overhaul of
the typechecker and overall type system

32

Conclusions

• We identify three general kinds of
typechecker bugs

• We describe automated techniques for
finding each of these three kinds of bugs

• We apply these ideas to the Rust
programming language, finding 14
confirmed bugs, all of which either have or
are being addressed

33

