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Teaser

• We identify three kinds of bugs that 
typecheckers can exhibit

• We describe general techniques for 
automatically finding these kinds of bugs

• We apply these ideas to testing the Rust 
programming language, and find 14 
developer-confirmed bugs
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Motivation
• Typecheckers are crucial components in 

statically typed languages

• Help ensure programs are correct

• Defend against exploits
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Motivation
• Problem: typecheckers can be buggy too

• Fail to accept well-typed programs

• Fail to reject ill-typed programs
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Idea

• Use black-box language fuzzing techniques 
to automatically find these bugs, ideally 
before they become a problem
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Existing Work

• Most existing work on language fuzzing 
fundamentally applies only to dynamically-
typed languages (e.g., jsfunfuzz)

• Based on performing a random walk over 
the language’s grammar, referred to as a 
stochastic grammar
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Type Errors

• Dynamic setting - still a valid test!

• Static setting - tests if typechecker correctly 
rejects things.  Except...

• No ground truth

• Most type errors are trivial

• Most randomly generated programs 
contain lots of type errors, which can mask 
each other

e = 1 + true

8



Existing Solutions
• All existing solutions that address these concerns 

suffer from at least one of the following problems:

• Some generated programs are “accidentally” 
ill-typed

• Not all well-typed programs can be generated

• Fundamentally cannot handle the entire type 
system

• Highly specific to language being tested
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Existing Solutions

• In all cases, the typechecker is an adversary 
to be overcome in order to test 
downstream components

• All implicitly assume the typechecker is 
correct
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Our Approach
• We focus our testing efforts on finding 

three specific kinds of typechecker bugs:

• Failure to accept a well-typed program

• Failure to reject an ill-typed program

• Inconsistent behavior on type equivalent 
programs

• We have devised general techniques for 
finding these three kinds of bugs
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Viewpoint from 
Program Analysis (1)

• Failure to accept a well-typed program is a 
precision bug

• While annoying to the programmer, 
guarantees provided by the type system are 
preserved
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• Failure to reject an ill-typed program is a 
soundness bug

• Silent loss of guarantees provided by the 
type system

• Potentially devastating

Viewpoint from 
Program Analysis (2)
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Finding Precision Bugs

• Intuition: generate guaranteed well-typed 
programs

• Any rejected programs indicate bugs
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Generating Well-Typed 
Programs

• We use constraint logic programming (CLP) 
for this purpose

• Typing rules can be specified in CLP, and 
CLP engines can execute them “backwards” 
to generate programs which are well-typed
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Well-Typed Generation 
Example: System F



System F Highlights

• This is the simply-typed lambda calculus...

• Higher-order functions

• ...with parametric polymorphism

• Type variables

• Serves as a simple example

• Despite simplicity, both higher-order 
functions and type variables fundamentally 
cannot be handled by prior work
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Grammar and Types
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Typing Rules in CLP

typing(Gamma, var(X), T) :-
  lookup(Gamma, X, T).

Typing Rule
CLP Code
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Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
  typing(Gamma, E1, arrow(T1, T2)),
  typing(Gamma, E2, T1).

Typing Rule
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From Typing Rules to a 
Generator

• We have implemented a typechecker here

• This can be trivially turned into a generator 
of well-typed terms, like so (where ?- 
indicates what to execute):

?- typing([], E, T), write(E), fail.
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Take-Home Point

• This generator of well-typed terms can be 
used to find precision bugs in typecheckers

• Since everything generated is well-
typed, if anything is rejected, it indicates 
the typechecker under test is buggy 
under the particular input
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Finding Soundness Bugs

• Intuition: generate ill-typed programs

• If the typechecker accepts any of them, 
then we have discovered a bug

• Simple solution: generate syntactically valid 
programs, and filter out those that happen 
to be well-typed (which occur rarely)
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Finding Soundness Bugs

• A purely syntactic approach results in fairly 
uninteresting tests

• They do not exploit information about 
the underlying type system

• Tend to be obviously ill-typed, so 
intuitively only the buggiest of 
typecheckers would let them through
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Better Approach

• Generate almost well-typed programs, 
which are ill-typed, but in subtle ways

• Intuitively, one simply negates a single 
premise of a single typing rule, in a 
nondeterministic manner

• Based on developer feedback
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Almost Well-Typed 
Generation Example: 

System F



Typing Rules in CLP

typing(Gamma, app(E1, E2), T2) :-
  typing(Gamma, E1, arrow(T1, T2)),
  typing(Gamma, E2, T1).

Typing Rule
CLP Code
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Typing Rules in CLP

Typing Rule
CLP Code

typing(Gamma, app(E1, E2), T2) :-
  typing(Gamma, E1, arrow(T1, T2)),
  typing(Gamma, E2, T3),
  T3 \== T1.
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Why Another Type of Bug?

• Theoretically, soundness and precision 
covers the entire state space

• Finding all possible precision and soundness 
bugs requires a full-blown typechecker 
implemented in CLP

• Lots of work

• Depending on the language, ground 
truth may be unclear
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Consistency Bugs

• Advantage: full ground truth is not 
necessary, only an understanding of what 
constitutes a type equivalent program

• This is generally much simpler

• If the typechecker behaves differently on 
type equivalent programs, it indicates a bug

• Both should be either well-typed or ill-
typed

27



Implementing 
Consistency Bug Finders

• Basic idea: write a syntax-based generator, 
using traditional fuzzing techniques

• Pass the output of this generator through a 
series of rewrite rules

• Ensure that both the input and the output 
to the rewrite rules behave the same
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Why Rust?
• A real language with a rapidly growing user 

base (over 3,300 packages available)

• A sophisticated type system with important 
guarantees (e.g., memory safety without GC)

• No formal semantics, or even an informal 
specification

• Worked closely with Rust development 
team
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Key Rust Type System 
Features

• Parametric polymorphism

• Generics

• Typeclasses

• Associated types

• Affine types

• Borrowing (reference types)
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Testing Methodology

• Handling all of the language with one fuzzer 
is extremely difficult

• Simpler approach: develop a series of 
fuzzers which handle subsets of the 
language

• Use different techniques for each 
fuzzer
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Results

• 18 bugs found across all categories

• 14 confirmed by developers

• Includes a specification-level bug, where a 
program was legally considered both ill-
typed and well-typed

• This work preceded a massive overhaul of 
the typechecker and overall type system
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Conclusions

• We identify three general kinds of 
typechecker bugs

• We describe automated techniques for 
finding each of these three kinds of bugs

• We apply these ideas to the Rust 
programming language, finding 14 
confirmed bugs, all of which either have or 
are being addressed
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