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Overall Contributions

• A fundamentally new perspective on 
parallelizing static analysis

• A parallel static analysis for JavaScript based 
on this new perspective

• Improved speedups over closely related 
analyses

• Hypothesize that more parallelization is 
possible, with relevant data
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Dataflow Analysis

• Over a program’s control flow graph

• Each node represents an equation to solve

• Edges define interdependencies between 
equations

• Overall, a system of equations

• Find a fixpoint of the system



Traditional Dataflow Analysis
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Traditional Dataflow Analysis
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INk = meet(OUTx)
for all predecessors x

of k

while (!fix()) {
  repeat();
}

OUTk = Xfer(INk)



Parallelization Problem

• Meets require synchronization 
and imply sequential 
dependencies

• Meets are everywhere
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To maximize parallelism, 
we need an alternative 

analysis perspective
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State Transition 
Representation

• Prior work: represent program analysis as a 
graph reachability problem on an infinite 
state transition system with state merging

• Rules for deriving a new state from an 
existing state

• Potentially an infinite number of states

• Start from some initial program state



State Transition 
Representation

• Prior work: represent program analysis as a 
graph reachability problem on an infinite 
state transition system with state merging

• Selectively merge states to keep things 
reasonably finite

• Many different merging strategies are 
possible, and correspond to different 
analysis sensitivities (e.g., k-CFA)



Example
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1: int x = 0;
2: while (randBool()) {
3:   x++;
4: }

Merging strategy: all states at the same line of code are 
merged together

x = 0

x = 1 halt

x = 2 halt

x = 0

halt

halt

x = ⊤

Before Merging After Merging



Core Insight: This 
Parallelizes Well

• State reachability over a tree is a massively 
parallel problem

• We can reason about the analysis 
separately from the state merging 
component

• The analysis itself need not change



Core Insight: This 
Parallelizes Well

• State merging strategies selectively impart 
sequential dependencies

• Dependencies are specific to a strategy

• Much smaller component than the 
whole analysis



Assigning Threads

• A separate problem from defining the 
analysis and where sequential dependencies 
lie

• Many possible assignment policies

• All three problems can vary 
independently in this definition



Dataflow Analysis as an 
Instantiation

• Traditional merging strategy: merge at 
every operation performed by the program

• For precision this is fine - not 
necessarily all states will be merged 
together

• For parallelism, this is poor - lots of 
synchronization is needed 
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Application: JavaScript

• Parallelized a sequential JavaScript analysis 
defined in prior work

• The feature set of JavaScript makes deriving 
a precise control flow graph unrealistic

• Traditional dataflow analysis is 
impossible



Merging Strategy
• Two states are merged together if:

• They occur at the same point of the 
program (e.g., line 10)

• The top k functions on the call stack 
are the same

• The program point along with the call stack 
snippet is a context

function foo() {
  foo(); // P
}

k = 3 foo:main
foo:foo:main
foo:foo:foo

Program Point P



Thread Assignment 
Strategy

• Program states in distinct contexts are 
assigned distinct threads

• Program states in the same context are 
uniformly assigned to the same thread



Thread Assignment
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Thread Assignment

main

Thread 1 Thread 2

main foo:main

foo:mainbar:main

Backlog 1

main



Evaluation

• On a series of open source real-world 
benchmarks taking between 30s and 20m

• Recording true speedups (i.e., relative to 
the preexisting sequential framework)

• Measure of scale and performance
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On Using One Thread Per 
Context

• Recall: we assign one thread per context

• If this is optimal, then more contexts 
should mean better scalability and 
performance
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Conclusions

• Our perspective on analysis is inherently 
parallel, unlike traditional dataflow analysis

• We see performance which is typically 
superior to related work

• Much improvement can still be made in 
assigning threads for better performance



Future Work

• Parallel experimentation with other 
merging and thread assignment strategies

• Application to C

• Would allow for direct comparison to 
related work


