
A Parallel Abstract
Interpreter for JavaScript

Kyle Dewey, Vineeth Kashyap, Ben Hardekopf

University of California, Santa Barbara

Overall Contributions

• A fundamentally new perspective on
parallelizing static analysis

• A parallel static analysis for JavaScript based
on this new perspective

• Improved speedups over closely related
analyses

• Hypothesize that more parallelization is
possible, with relevant data

Outline

• Background

• Prior work and core insight

• Evaluation

• Conclusions

Outline

• Background

• Prior work and core insight

• Evaluation

• Conclusions

Dataflow Analysis

• Over a program’s control flow graph

• Each node represents an equation to solve

• Edges define interdependencies between
equations

• Overall, a system of equations

• Find a fixpoint of the system

Traditional Dataflow Analysis

Traditional Dataflow Analysis

n1

n2 n3

n4 n5

n6

Traditional Dataflow Analysis

n1

n2 n3

n4 n5

n6

Traditional Dataflow Analysis

n1

n2 n3

n4 n5

n6

INk = meet(OUTx)
for all predecessors x

of k

Traditional Dataflow Analysis

n1

n2 n3

n4 n5

n6

INk = meet(OUTx)
for all predecessors x

of k

OUTk = Xfer(INk)

Traditional Dataflow Analysis

n1

n2 n3

n4 n5

n6

INk = meet(OUTx)
for all predecessors x

of k

while (!fix()) {
 repeat();
}

OUTk = Xfer(INk)

Parallelization Problem

• Meets require synchronization
and imply sequential
dependencies

• Meets are everywhere

n1

n2 n3

n4 n5

n6

To maximize parallelism,
we need an alternative

analysis perspective

Outline

• Background

• Prior work and core insight

• Evaluation

• Conclusions

State Transition
Representation

• Prior work: represent program analysis as a
graph reachability problem on an infinite
state transition system with state merging

State Transition
Representation

• Prior work: represent program analysis as a
graph reachability problem on an infinite state
transition system with state merging

• Is a particular possible program state
reachable from some initial program state?

State Transition
Representation

• Prior work: represent program analysis as a
graph reachability problem on an infinite
state transition system with state merging

• Rules for deriving a new state from an
existing state

• Potentially an infinite number of states

• Start from some initial program state

State Transition
Representation

• Prior work: represent program analysis as a
graph reachability problem on an infinite
state transition system with state merging

• Selectively merge states to keep things
reasonably finite

• Many different merging strategies are
possible, and correspond to different
analysis sensitivities (e.g., k-CFA)

Example

1: int x = 0;
2: while (randBool()) {
3: x++;
4: }

1: int x = 0;
2: while (randBool()) {
3: x++;
4: }

x = 0

x = 1 halt

x = 2 halt

1: int x = 0;
2: while (randBool()) {
3: x++;
4: }

Merging strategy: all states at the same line of code are
merged together

1: int x = 0;
2: while (randBool()) {
3: x++;
4: }

Merging strategy: all states at the same line of code are
merged together

x = 0

x = 1 halt

x = 2 halt

x = 0

halt

halt

x = ⊤

Before Merging After Merging

Core Insight: This
Parallelizes Well

• State reachability over a tree is a massively
parallel problem

• We can reason about the analysis
separately from the state merging
component

• The analysis itself need not change

Core Insight: This
Parallelizes Well

• State merging strategies selectively impart
sequential dependencies

• Dependencies are specific to a strategy

• Much smaller component than the
whole analysis

Assigning Threads

• A separate problem from defining the
analysis and where sequential dependencies
lie

• Many possible assignment policies

• All three problems can vary
independently in this definition

Dataflow Analysis as an
Instantiation

• Traditional merging strategy: merge at
every operation performed by the program

• For precision this is fine - not
necessarily all states will be merged
together

• For parallelism, this is poor - lots of
synchronization is needed

Outline

• Background

• Prior work and core insight

• Evaluation

• Conclusions

Application: JavaScript

• Parallelized a sequential JavaScript analysis
defined in prior work

• The feature set of JavaScript makes deriving
a precise control flow graph unrealistic

• Traditional dataflow analysis is
impossible

Merging Strategy
• Two states are merged together if:

• They occur at the same point of the
program (e.g., line 10)

• The top k functions on the call stack
are the same

• The program point along with the call stack
snippet is a context

function foo() {
 foo(); // P
}

k = 3 foo:main
foo:foo:main
foo:foo:foo

Program Point P

Thread Assignment
Strategy

• Program states in distinct contexts are
assigned distinct threads

• Program states in the same context are
uniformly assigned to the same thread

Thread Assignment

main

Thread 1 Thread 2

Thread Assignment

main

Thread 1 Thread 2

main foo:main

Thread Assignment

main

Thread 1 Thread 2

main foo:main

foo:mainbar:main

Backlog 1

main

Evaluation

• On a series of open source real-world
benchmarks taking between 30s and 20m

• Recording true speedups (i.e., relative to
the preexisting sequential framework)

• Measure of scale and performance

Number of Cores

Sp
ee

du
p

On Using One Thread Per
Context

• Recall: we assign one thread per context

• If this is optimal, then more contexts
should mean better scalability and
performance

A
ve

ra
ge

 N
um

be
r

of
 A

va
ila

bl
e

C
on

te
xt

s
Speedup

A
ve

ra
ge

 N
um

be
r

of
 A

va
ila

bl
e

C
on

te
xt

s
Speedup

A
ve

ra
ge

 N
um

be
r

of
 A

va
ila

bl
e

C
on

te
xt

s
Speedup

A
ve

ra
ge

 N
um

be
r

of
 A

va
ila

bl
e

C
on

te
xt

s
Speedup

Outline

• Background

• Prior work and core insight

• Evaluation

• Conclusions

Conclusions

• Our perspective on analysis is inherently
parallel, unlike traditional dataflow analysis

• We see performance which is typically
superior to related work

• Much improvement can still be made in
assigning threads for better performance

Future Work

• Parallel experimentation with other
merging and thread assignment strategies

• Application to C

• Would allow for direct comparison to
related work

