Code-Specific, Sensitive, and
Configurable Plagiarism
Detection

Kyle Dewey, Ben Hardekopf

Simple(?) Problem

® Want to perform automated plagiarism

detection of Scala code originating from
class assignments

® Doing this by hand is time-consuming,
tedious, and error-prone

MOSS

Plaglarism Detection x |\ +
& & theory.stanford.edu/~alken/moss/ e | (B~ Google Q &e 3 A

A System for Detecting Software Plagiarism

UPDATES

o May 18, 2014 Communiry contributions (incuding a Windows submission GUI from Shane May, thanks!) are now in their own section on this page.

o May 14,2014 And here is a Java version of the submission script. Thanks to Bjoern Zielke!

o May 2,2014 Here is a PHP version of the submission script. Many thanks to Phillip Rehs!

e June 9, 2011 There were two outages over the last couple of days that lasted no more than a hour each (I think). I've made some changes to the disk management software that should prevent these
problems from recurring.

o April 29,2011 There was an outage lasting a few hours today, the first since last summer, but everything is back up.

o August 1,2010 Everything is back to normal.

o July 27,2010 The Moss server is back on line. There may be some more tuning and possibly downtime in the coming weeks, but any outages should be brief. New registrations are not yet working, but
people with existing accounts can submit jobs.

o July 25, 2010 As many (many!) people have noticed, the Moss server has been down for all of July. Unfortunately the hardware failed while I was away on a trip. I am hopeful it will be back up within a
few days.

What is Moss?

Moss (for a Measure Of Software Similarity) is an automatic system for determining the similarity of programs. To date, the main application of Moss has been in detecting plagiarism in programming classes.
Since its development in 1994, Moss has been very effective in this role. The algorithm behind moss is a significant improvement over other cheating detection algorithms (at least, over those known to us).

What is Moss Not?

Moss is not a system for completely automatically detecting plagiarism. Plagiarism is a satement that someone copied code deliberately without attribution, and while Moss automatically detects program
similarity, it has no way of knowing why codes are similar. It is still up to a human to go and look at the parts of the code that Moss highlights and make a decision about whether there is plagiarism or not. One

way of thinking about what Moss provides is that it saves teachers and teaching staff a lot of time by pointing out the parts of programs that are worth a more detailed examination. But once someone has looked
ar thnee nartinng of the nmorame it chanldn't marter wherher the cngneet ende wag firer dicenversad hv Mnge nr hv 2 human® the cage that there wag nlaciariem chanld crand nn i nwn

MOSS

Plaglarism Detection X | 4

& | (B~ Googlg QA B & A

& | & theory.stanford.edu/~alken/moss/

A System for Detecting Software Figgiarism

UPDATES

o May 18, 2014 Communiry contributions (incuding a Windows submission GUI from
o May 14, 2014 And here is a Java version of the submission script. Thanks to Bjoern Ziel
o May 2,2014 Here is a PHP version of the submission script. Many thanks to Phillip Rehs!
e June 9, 2011 There were two outages over the last couple of days that lasted no more than a hoR@each ink). I've made some changes to the disk management software that should prevent these
problems from recurring.
o April 29,2011 There was an outage lasting a few hours today, the first since last summer, but eve,
o August 1,2010 Everything is back to normal.
o July 27, 2010 The Moss server is back on line. There may be some more tuning and possibly@@wntime in oming weeks, but any outages should be brief. New registrations are not yet working, but
people with existing accounts can submit jobs.
o July 25, 2010 As many (many!) people have noticed, the Moss server has been down
Jew days.

e May, thanks!) are no

their own section on this page.

2 is back up.

all of July. Unfortunate hardware failed while I was away on a trip. I am hopeful it will be back up within a

What is Moss?

Moss (for a Measure Of Software Similarity) is an automatic system for detg
Since its development in 1994, Moss has been very effective in this role. B

ing the similarity of programs. To date, the main appR@tion of Moss has been in detecting plagiarism in programming classes.
algorithm behind moss is a significant improvement over 0@ cheating detection algorithms (at least, over those known to us).

What is Moss Not?

Moss is not a system for completely automatically detec
similarity, it has no way of knowing why codes are sirg
way of thinking about what Moss provides is that i

ar thnee nartinng nf the nmeorame it chanldn't

Pplagiarism. Plagiarism is a satement that someone copied code deliberately without attributioNgand while Moss automatically detects program
. It is still up to a human to go and look at the parts of the code that Moss highlights and make a déS@aion about whether there is plagiarism or not. One

ves teachers and teaching staff a lot of time by pointing out the parts of programs that are worth a more d&@led examination. But once someone has looked
wherther the aneneet ende wag first dicenvered hvy Mnge nr hv a himan' the cage that there wag nlaciariem cha srand nn i nwn

No Scala Support, Proprietary .

MOSS

Winnowing: Local Algorithms for Document Fingerprinting

Saul Schleimer
MSCS

University of lllinois, Chicago
saul@math.uic.edu

ABSTRACT

Digital content is for copying: quotation, revision, plagiarism, and
file sharing all create copies. Document fingerprinting is concerned
with accurately identifying copying, including small partial copies,
within large sets of documents.

We introduce the class of local document fingerprinting algo-
rithms, which seems to capture an essential property of any finger-
printing technique guaranteed to detect copies. We prove a novel
lower bound on the performance of any local algorithm. We also
develop winnowing, an efficient local fingerprinting algorithm, and
show that winnowing’s performance is within 33% of the lower
bound. Finally, we also give experimental results on Web data, and
report experience with MOSS, a widely-used plagiarism detection
service.

1. INTRODUCTION

Digital documents are easily copied. A bit less obvious, perhaps,

is the wide variety of different reasons for which digital documents
are either comnletelv or nartiallv dunlicated. Peonle auote from

Daniel S. Wilkerson
Computer Science Division
UC Berkeley

dsw@cs.berkeley.edu

Alex Aiken

Computer Science Division
UC Berkeley

aiken@cs.berkeley.edu

A do run run run, a do run run
(a) Some text from [7].

adorunrunrunadorunrun
(b) The text with irrelevant features removed.

adoru dorun orunr runru unrun nrunr runru

unrun nruna runad unado nador adoru dorun
orunr runru unrun
(c¢) The sequence of 5-grams derived from the text.

77 72 42 17 98 50 17 98 8 88 67 39 77 72 42
17 98
(d) A hypothetical sequence of hashes of the 5-grams.

72 8 88 72
(e) The sequence of hashes selected using 0 mod 4.

Figure 1: Fingerprinting some sample text.

MOSS

ocal Algorithms for Document Finc

Winnowing printing

Saul Schleimé Daniel S. Wilkerson A X Aiken

MSCS Computer Science Division Compyer Science Division
University of lllinois, Chicag UC Berkeley UC Berkeley
saul@math.uic.edu dsw@cs.berkeley.edu en@cs.berkeley.edu

A do
(a) 3

an run run, a do run run
e text from [7].

ABSTRACT

Digital content is for copying: quotation, revision, plagiarism, and
file sharing all create copies. Document fingerprinting is concerned
with accurately identifying copying, including small partial copies,
within large sets of documents.
We introduce the class of local document fingerprinting ald¥-
rithms, which seems to capture an essential property of any @#fer- adoru S@run orunr runru unrun Nrunr runru
printing technique guaranteed to detect copies. We proyg¥ novel unrun nrega runad unado nador adoru dorun
lower bound on the performance of any local algorithd?” We also orunr runregunrun
develop winnowing, an efficient local fingerprintingg@rorithm, and (c) The sequence §@S-grams derived from the text.
show that winnowing’s performance is within 2% of the lower
bound. Finally, we also give experimental ress on Web data, and 77 72 42 17 98 50

dorunrunrunadorunrun
(b¥&he text with irrelevant features removed.

7 98 8 88 67 39 77 72 42

report experience with MOSS, a widely-usg¥ plagiarism detection 17 98
SRS FRES. (d) A hypothetical sequence oNg@shes of the 5-grams.
1. INTRODUCTIO 72 8 88 72
Digital documents are easi@Copied. A bit less obvious, perhaps, (e) The sequence of hashes selected using mod 4.
is the wide variety of diffea@it reasons for which digital documents
are either comnletelv gfbartiallv dunlicated. Peonle auote from Figure 1: Fingerprinting some sz e text.

Lackluster Results

Fundamental Problems

® Existing plagiarism detection tools tend to suffer
from at least one of the following problem:s:

® Meant for plaintext (loses code-specific
information)

® | ossy (loses information in general)

® Difficult to specialize for individual assignments
(lack of configurability)

A Solution Must:

® Be aware of syntax
® Use all available information

® Allow for easy, highly specific configurability

Our Solution

Step |:Parse in Code

Step |:Parse in Code

A Solution Must:

® Be aware of syntax

|10

Step 2: Extract Features via
a User-Defined Function

Step 2: Extract Features via
a User-Defined Function

1f

Step 2: Extract Features via
a User-Defined Function

1f

Step 2: Extract Features via
a User-Defined Function

1f | eg

Step 2: Extract Features via
a User-Defined Function

1f eq eq

Step 2: Extract Features via
a User-Defined Function

1f eq | eq | var

Step 2: Extract Features via
a User-Defined Function

1f eq | eq | var

Step 2: Extract Features via
a User-Defined Function

1f

1f eq | eq |var | var

Step 2: Extract Features via
a User-Defined Function

1f

1f eq eq | var | var

A Solution Must:

® Allow for easy, highly specific configurability

12

Step 3:Align Using Optimal
Sequence Alignment
Algorithm

Takes two if | eq | eq | var | var
feature

vectors (from
two separate
programs)...

1f eq | eq | var

Step 3:Align Using Optimal
Sequence Alignment
Algorithm

int score (Feature a,
Feature b) {

...along with a
if (a == b) {

scoring
function for return 1;
comparing boelse

return -1;

J
J

two features.

|4

Step 3:Align Using Optimal
Sequence Alignment
Algorithm

Returns an optimal alignment and a numeric score for the
alighment

1f eq eq | var | var

1f eq eq | ——— | var

Score: 9

|5

A Solution Must:

® Use all available information (optimal)

® Allow for easy, highly specific configurability
(scoring function)

|6

Key Differences from
Related VWork

® We consider whole abstract syntax trees,
not just tokens

® User-defined feature extraction

® User-defined scoring

|7

Application of our
Technique to Scala

Components to Plug In

® [Feature extractor

® Pairwise feature scoring function

19

Feature Extraction
Phase One

® Extract out methods and sort by size
® Jolerant of reordering

® Process method-by-method, forming a
single feature sequence

20

Feature Extraction
Phase Two

® Do a traversal over each method, emitting
feature information for forms related to
control flow (e.g., 1 £) and variable binding

® Jend to be highly unique to a solution

® |iterals and names are put into
equivalence classes (e.g, all literals have
the same feature)

21

Scoring Function

® Quite naive: +2 for any two matched
features, and -| for and mismatches

® Gaps (the ——- part shown before)
uniformly have a -| score

® Could be much more complex if so desired

22

Putting it All Together

® |Implemented via a scalac compiler
plugin, which gives direct access to the
parser

® Series of scripts on top for running over
multiple pairs of code

23

Evaluation and Results

® Applied to a previous assignment which had
been manually annotated for plagiarism

® All known cases of plagiarism were high-
scoring

® Only one unannotated high-scoring case
(which turned out to have been missed)

® Remainder were low-scoring

® Jook only a few minutes

24

Future Work

® Also have prototype for Prolog, which has
proven more difficult to get right

® Syntax is so simple that it provides very
little information about control flow

® Dynamically typed so less information
available syntactically at all

® Currently, lots of false positives

25

