
Code-Specific, Sensitive, and
Configurable Plagiarism

Detection
Kyle Dewey, Ben Hardekopf

Simple(?) Problem

• Want to perform automated plagiarism
detection of Scala code originating from
class assignments

• Doing this by hand is time-consuming,
tedious, and error-prone

1

MOSS

2

MOSS

No Scala Support, Proprietary 3

MOSS

4

MOSS

Lackluster Results 5

Fundamental Problems

• Existing plagiarism detection tools tend to suffer
from at least one of the following problems:

• Meant for plaintext (loses code-specific
information)

• Lossy (loses information in general)

• Difficult to specialize for individual assignments
(lack of configurability)

6

A Solution Must:

• Be aware of syntax

• Use all available information

• Allow for easy, highly specific configurability

7

Our Solution

8

Step 1: Parse in Code
if (true) {
 x = 1;
} else {
 y = 2;
}

9

Step 1: Parse in Code
if (true) {
 x = 1;
} else {
 y = 2;
} if

true = =

x 1 y 2

9

A Solution Must:

• Be aware of syntax

• Use all available information

• Allow for easy, highly specific configurability

10

Step 2: Extract Features via
a User-Defined Function

if

true = =

x 1 y 2

11

Step 2: Extract Features via
a User-Defined Function

if

true = =

x 1 y 2

if
11

Step 2: Extract Features via
a User-Defined Function

true = =

x 1 y 2

if

if

11

Step 2: Extract Features via
a User-Defined Function

= =

x 1 y 2

if eq

if

true

11

Step 2: Extract Features via
a User-Defined Function

=

x 1 y 2

if eq eq

if

true =

11

Step 2: Extract Features via
a User-Defined Function

x 1 y 2

if eq eq var

if

true = =

11

Step 2: Extract Features via
a User-Defined Function

1 y 2

if eq eq var

if

true = =

x

11

Step 2: Extract Features via
a User-Defined Function

y 2

if eq eq var var

if

true = =

x 1

11

Step 2: Extract Features via
a User-Defined Function

2

if eq eq var var

if

true = =

x 1 y

11

A Solution Must:

• Be aware of syntax

• Use all available information

• Allow for easy, highly specific configurability

12

Step 3: Align Using Optimal
Sequence Alignment

Algorithm

if eq eq var var

if eq eq var

Takes two
feature

vectors (from
two separate
programs)...

13

Step 3: Align Using Optimal
Sequence Alignment

Algorithm

...along with a
scoring

function for
comparing

two features.

int score(Feature a,
 Feature b) {
 if (a == b) {
 return 1;
 } else {
 return -1;
 }
}

14

Step 3: Align Using Optimal
Sequence Alignment

Algorithm

Returns an optimal alignment and a numeric score for the
alignment

Score: 9

if eq eq var var

if eq eq --- var

15

A Solution Must:

• Be aware of syntax

• Use all available information (optimal)

• Allow for easy, highly specific configurability
(scoring function)

16

Key Differences from
Related Work

• We consider whole abstract syntax trees,
not just tokens

• User-defined feature extraction

• User-defined scoring

17

Application of our
Technique to Scala

18

Components to Plug In

• Feature extractor

• Pairwise feature scoring function

19

Feature Extraction
Phase One

• Extract out methods and sort by size

• Tolerant of reordering

• Process method-by-method, forming a
single feature sequence

20

Feature Extraction
Phase Two

• Do a traversal over each method, emitting
feature information for forms related to
control flow (e.g., if) and variable binding

• Tend to be highly unique to a solution

• Literals and names are put into
equivalence classes (e.g, all literals have
the same feature)

21

Scoring Function

• Quite naive: +2 for any two matched
features, and -1 for and mismatches

• Gaps (the --- part shown before)
uniformly have a -1 score

• Could be much more complex if so desired

22

Putting it All Together

• Implemented via a scalac compiler
plugin, which gives direct access to the
parser

• Series of scripts on top for running over
multiple pairs of code

23

Evaluation and Results

• Applied to a previous assignment which had
been manually annotated for plagiarism

• All known cases of plagiarism were high-
scoring

• Only one unannotated high-scoring case
(which turned out to have been missed)

• Remainder were low-scoring

• Took only a few minutes
24

Future Work

• Also have prototype for Prolog, which has
proven more difficult to get right

• Syntax is so simple that it provides very
little information about control flow

• Dynamically typed so less information
available syntactically at all

• Currently, lots of false positives

25

