
Automated Data Structure
Generation: Refuting
Common Wisdom

Kyle Dewey, Lawton Nichols, Ben Hardekopf

1

University of California, Santa Barbara

Teaser

• Common wisdom: imperative techniques are
fast but inexpressive, while declarative
techniques slow but easy to work with

• In contrast, we find that declarative techniques are
uniformly lightning fast (~30x to 9,000,000x)

• However, for previously unattempted complex data
structures, declarative techniques lack usability

From the standpoint of automatically generating
intricate, highly constrained data structures:

2

Outline

• Background

• Simple example

• Usability problems

• Performance evaluation

3

Outline

• Background

• Simple example

• Usability problems

• Performance evaluation

4

Basic Problem
We want to develop black-box generators for complex,

constrained data structures, in order to enable automated
testing of code that operates on these data structures

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-
black_tree_example.svg

5

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg

Specifying Data
Structure Generators

• Imperative approaches feature loops and
assignment, and are focused on how to generate

• Declarative approaches lack imperative features,
and allow for logical descriptions of high-level
features focused on what to generate

Two general approaches: imperative and declarative

6

Common Wisdom

• Imperative techniques are fast, but
potentially unwieldy

• Declarative techniques are slow, but easier
to use

7

Our Observation:
There are Hidden
Caveats to This

Common Wisdom

Performance Caveat

• One 13 year old result

• Compares a SAT-based approach to a non-
SAT-based approach

• SAT is not the only way to write
declarative code

9

Imperative means fast?

Usability Caveat

• Most complex data structure ever
generated: valid red/black trees

• These are not actually all that
complicated

• Nothing considers operations on the
data structures

10

Declarative means expressive?

Our Contribution

• Test using a declarative approach that is not
SAT-based

• Test with more complex data structures,
along with special variants of them

• E.g., red/black trees which will rebalance
upon the insertion of some value k

11

Declarative Without SAT

• Our observation: related work has been
incrementally moving towards
implementing a constraint logic
programming (CLP) engine

• We will use CLP directly as our declarative
stand-in

• Re-use decades of existing work

12

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

13

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

14

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

15

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

16

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

Covered in related work

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

Novel to this work

18

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

19

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

20

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

21

Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

22

Special Variants

• For each of these data structures, we also
defined a special variant of them which
tends to indicate a more interesting version
for testing purposes

• Tried to select variants that stressed data
structure specific operations

• More details in the paper

23

Special Variants with an
Operational Nature

• Red-black trees: need insertion and
rebalancing

• Array heaps: need dequeueing

• Splay trees: need splay

• B-trees: need insertion and node splitting

24

We are the first to look at these operations in
the context of generation.

Outline

• Background

• Simple example

• Usability problems

• Performance evaluation

25

Example: Sorted Linked Lists

26

Sorted Linked Lists

• Each element is between 0 and K

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if
applicable

• I.e., the list is in ascending order

27

“Each element is between 0 and K”

28

“Each element is between 0 and K”

inBound(K, Element)

29

“Each element is between 0 and K”

inBound(K, Element) :-

30

“Each element is between 0 and K”

inBound(K, Element) :-
 0 #=< Element

31

“Each element is between 0 and K”

inBound(K, Element) :-
 0 #=< Element,

32

“Each element is between 0 and K”

inBound(K, Element) :-
 0 #=< Element,
 Element #=< K

33

“Each element is between 0 and K”

inBound(K, Element) :-
 0 #=< Element,
 Element #=< K.

34

“Each element is between 0 and K”

inBound(K, Element) :-
 0 #=< Element,
 Element #=< K.

35

Sorted Linked Lists

• Each element is between 0 and K

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if
applicable

• I.e., the list is in ascending order

36

Sorted Linked Lists

• Each element is between 0 and K

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if
applicable

• I.e., the list is in ascending order

37

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

38

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)

39

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).

40

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-

41

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0

42

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).

43

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-

44

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
 N > 1

45

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
 N > 1,
 Elm1 #=< Elm2

46

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
 N > 1,
 Elm1 #=< Elm2,
 inBound(K, Elm1),

47

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
 N > 1,
 Elm1 #=< Elm2,
 inBound(K, Elm1),
 NewN is N - 1,

48

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
 N > 0,
 inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
 N > 1,
 Elm1 #=< Elm2,
 inBound(K, Elm1),
 NewN is N - 1,
 sorted(NewN, K, [Elm2|Rest]).

49

Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).

50

Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).

51

Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).

List = [] ;
List = [0] ;
...
List = [1, 3, 3] ;
...
List = [2, 2, 4] ;
...

52

Outline

• Background

• Simple example

• Usability problems

• Performance evaluation

53

Fundamental Problem:
Not Everything is as

Simple as a Sorted List

54

B-Tree Invariants

• Include:

• Every node has at most m children

• All leaves appear in the same level

• Decidedly logical in nature

• Easy to express declaratively

An Operational Twist

• The invariants before define what a B-tree is

• What if we are interested in testing
operations on B-trees, specifically with trees
intentionally designed to stress corner cases?

• Under specific conditions, tree structure
must radically change upon element
insertion

• Requires us to explain operations to the
generator

56

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
... 57

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
... 58

How to implement?

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
... 59

Imperative Setting: Implement Directly

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

60

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

Actual Imperative Implementation Code (Korat)

Imperative Specification

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

61

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

62

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

63

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

64

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
...

65

void insertNonFull(Node x, int k) {
 int i = x.n;
 if (x.leaf) {
 while (i >= 1 && k < x.key[i]) {
 x.key[i + 1] = x.key[i];
 i = i - 1;
 }
....

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
...

=> ???

66

Declarative Setting: Logical Implication

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
... 67

B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4: do keyi+1[x] <- keyi[x]
5: i <- i - 1
6: keyi+1[x] <- k
7: n[x] <- n[x] + 1
8: DISK-WRITE(x)
9: else while i ≥ 1 && k < keyi[x]
10: do i <- i - 1
11: i <- i + 1
12: DISK-READ(ci[x])
13: if n[ci[x]] = 2t - 1
14: then B-TREE-SPLIT-CHILD(...)
... 68

Our Observation: Imperative
Features are Desirable for
Modeling Operations on

Data Structures

69

Outline

• Background

• Simple example

• Usability problems

• Performance evaluation

70

Measuring Performance

• Tested all aforementioned data structures
and their special variants on Korat, UDITA,
and CLP (using GNU Prolog)

• Measured how quickly all data structures
within certain bounds could be generated,
with a 30 minute timeout

71

Small Bounds

0.00100

500.00075

1000.00050

1500.00025

2000.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat UDITA CLP

72

Seconds
(lower is
better)

Small Bounds

0.00100

500.00075

1000.00050

1500.00025

2000.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat UDITA CLP

73

Seconds
(lower is
better)

UDITA Is Extremely Slow

Small Bounds

0.00100

37.50075

75.00050

112.50025

150.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat CLP

74

Seconds
(lower is
better)

Small Bounds

0.00100

37.50075

75.00050

112.50025

150.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat CLP

CLP Barely Registers

75

Seconds
(lower is
better)

Medium Bounds

• UDITA times out on everything

• Korat times out on 5 / 14 experiments

• CLP is generally ~30x - 1,000x faster

• For B-trees, Korat and UDITA both
timeout, but CLP completes within a
single millisecond

76

Large Bounds

• Korat and UDITA timeout on everything

• Depending on the data structure, CLP takes
between ~70 seconds and just under 30
minutes

77

On Usability
• Informal argument

• No data structure took more than 90
minutes to specify in Korat or UDITA

• Code and algorithm reuse

• CLP variants always took significantly longer,
up to 10 hours for B-trees

• Existing code all imperative, with little
explanation of why it works

78

Conclusions

• CLP, a declarative technique, dramatically
outperforms the imperative Korat and
UDITA,defying common wisdom

• Korat and UDITA allow for much easier
modeling than CLP, entirely because they are
imperative in nature

79

