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Teaser

• Common wisdom: imperative techniques are 
fast but inexpressive, while declarative 
techniques slow but easy to work with

• In contrast, we find that declarative techniques are 
uniformly lightning fast (~30x to 9,000,000x)

• However, for previously unattempted complex data 
structures, declarative techniques lack usability

From the standpoint of automatically generating
intricate, highly constrained data structures:
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Outline

• Background

• Simple example

• Usability problems

• Performance evaluation
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Basic Problem
We want to develop black-box generators for complex, 

constrained data structures, in order to enable automated 
testing of code that operates on these data structures

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-
black_tree_example.svg
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Specifying Data 
Structure Generators

• Imperative approaches feature loops and 
assignment, and are focused on how to generate

• Declarative approaches lack imperative features, 
and allow for logical descriptions of high-level 
features focused on what to generate

Two general approaches: imperative and declarative
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Common Wisdom

• Imperative techniques are fast, but 
potentially unwieldy

• Declarative techniques are slow, but easier 
to use
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Our Observation: 
There are Hidden 
Caveats to This 

Common Wisdom



Performance Caveat

• One 13 year old result

• Compares a SAT-based approach to a non-
SAT-based approach

• SAT is not the only way to write 
declarative code
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Imperative means fast?



Usability Caveat

• Most complex data structure ever 
generated: valid red/black trees

• These are not actually all that 
complicated

• Nothing considers operations on the 
data structures
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Declarative means expressive? 



Our Contribution

• Test using a declarative approach that is not 
SAT-based

• Test with more complex data structures, 
along with special variants of them

• E.g., red/black trees which will rebalance 
upon the insertion of some value k
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Declarative Without SAT

• Our observation: related work has been 
incrementally moving towards 
implementing a constraint logic 
programming (CLP) engine

• We will use CLP directly as our declarative 
stand-in

• Re-use decades of existing work
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Data Structures
• Sorted linked lists

• Red-black trees

• Array heaps

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees
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Data Structures
• Sorted linked lists
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• ANI images (via grammars)
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Novel to this work
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Special Variants

• For each of these data structures, we also 
defined a special variant of them which 
tends to indicate a more interesting version 
for testing purposes

• Tried to select variants that stressed data 
structure specific operations

• More details in the paper
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Special Variants with an 
Operational Nature

• Red-black trees: need insertion and 
rebalancing

• Array heaps: need dequeueing

• Splay trees: need splay

• B-trees: need insertion and node splitting
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We are the first to look at these operations in
the context of generation.
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Example: Sorted Linked Lists
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Sorted Linked Lists

• Each element is between 0 and K 

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if 
applicable

• I.e., the list is in ascending order
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“Each element is between 0 and K”
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“Each element is between 0 and K”

inBound(K, Element)
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“Each element is between 0 and K”

inBound(K, Element) :-
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“Each element is between 0 and K”

inBound(K, Element) :-
  0 #=< Element
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“Each element is between 0 and K”

inBound(K, Element) :-
  0 #=< Element,
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“Each element is between 0 and K”

inBound(K, Element) :-
  0 #=< Element,
  Element #=< K
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“Each element is between 0 and K”

inBound(K, Element) :-
  0 #=< Element,
  Element #=< K.
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“Each element is between 0 and K”

inBound(K, Element) :-
  0 #=< Element,
  Element #=< K.
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Sorted Linked Lists

• Each element is between 0 and K 

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if 
applicable

• I.e., the list is in ascending order
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Sorted Linked Lists

• Each element is between 0 and K 

• A list contains between 0 and N elements

• Each element is ≤ the element after it, if 
applicable

• I.e., the list is in ascending order
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

38



“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
  N > 1
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
  N > 1,
  Elm1 #=< Elm2
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
  N > 1,
  Elm1 #=< Elm2,
  inBound(K, Elm1),
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
  N > 1,
  Elm1 #=< Elm2,
  inBound(K, Elm1),
  NewN is N - 1,
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“A list contains between 0 and N elements 
in ascending order, all between 0 and K”

% sorted: (N, K, List)
sorted(_, _, []).
sorted(N, K, [Element]) :-
  N > 0,
  inBound(K, Element).
sorted(N, K, [Elm1, Elm2|Rest]) :-
  N > 1,
  Elm1 #=< Elm2,
  inBound(K, Elm1),
  NewN is N - 1,
  sorted(NewN, K, [Elm2|Rest]).
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Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).
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Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).
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Putting it All Together
% sorted: (N, K, List)
%
% Query below:
?- sorted(3, 4, List), label(List).

List = [] ;
List = [0] ;
...
List = [1, 3, 3] ;
...
List = [2, 2, 4] ;
...
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Outline

• Background

• Simple example

• Usability problems

• Performance evaluation
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Fundamental Problem: 
Not Everything is as 

Simple as a Sorted List
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B-Tree Invariants

• Include:

• Every node has at most m children

• All leaves appear in the same level

• Decidedly logical in nature

• Easy to express declaratively



An Operational Twist

• The invariants before define what a B-tree is

• What if we are interested in testing 
operations on B-trees, specifically with trees 
intentionally designed to stress corner cases?

• Under specific conditions, tree structure 
must radically change upon element 
insertion

• Requires us to explain operations to the 
generator
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B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
... 57



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
... 58

How to implement?



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
... 59

Imperative Setting: Implement Directly



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
....

Actual Imperative Implementation Code (Korat)

Imperative Specification



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
....



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
....



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
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B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
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B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
...
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void insertNonFull(Node x, int k) {
  int i = x.n;
  if (x.leaf) {
    while (i >= 1 && k < x.key[i]) {
      x.key[i + 1] = x.key[i];
      i = i - 1;
    }
....



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
...

=> ???
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Declarative Setting: Logical Implication



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
... 67



B-TREE-INSERT-NONFULL(x, k)
1: i <- n[x]
2: if leaf[x]
3: then while i ≥ 1 && k < keyi[x]
4:         do keyi+1[x] <- keyi[x]
5:            i <- i - 1
6:      keyi+1[x] <- k
7:      n[x] <- n[x] + 1
8:      DISK-WRITE(x)
9:   else while i ≥ 1 && k < keyi[x]
10:          do i <- i - 1
11:     i <- i + 1
12:     DISK-READ(ci[x])
13:     if n[ci[x]] = 2t - 1
14:       then B-TREE-SPLIT-CHILD(...)
... 68



Our Observation: Imperative 
Features are Desirable for 
Modeling Operations on 

Data Structures
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• Usability problems

• Performance evaluation
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Measuring Performance

• Tested all aforementioned data structures 
and their special variants on Korat, UDITA, 
and CLP (using GNU Prolog)

• Measured how quickly all data structures 
within certain bounds could be generated, 
with a 30 minute timeout
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Small Bounds
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UDITA Is Extremely Slow



Small Bounds
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Small Bounds
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Medium Bounds

• UDITA times out on everything

• Korat times out on 5 / 14 experiments

• CLP is generally ~30x - 1,000x faster

• For B-trees, Korat and UDITA both 
timeout, but CLP completes within a 
single millisecond

76



Large Bounds

• Korat and UDITA timeout on everything

• Depending on the data structure, CLP takes 
between ~70 seconds and just under 30 
minutes
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On Usability
• Informal argument

• No data structure took more than 90 
minutes to specify in Korat or UDITA

• Code and algorithm reuse

• CLP variants always took significantly longer, 
up to 10 hours for B-trees

• Existing code all imperative, with little 
explanation of why it works
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Conclusions

• CLP, a declarative technique, dramatically 
outperforms the imperative Korat and 
UDITA,defying common wisdom

• Korat and UDITA allow for much easier 
modeling than CLP, entirely because they are 
imperative in nature
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