Automated Data Structure
Generation: Refuting
Common Wisdom

Kyle Dewey, Lawton Nichols, Ben Hardekopf

University of California, Santa Barbara

Teaser

From the standpoint of automatically generating
intricate, highly constrained data structures:

® Common wisdom: imperative techniques are
fast but inexpressive, while declarative
techniques slow but easy to work with

® |n contrast, we find that declarative techniques are
uniformly lightning fast (~30x to 9,000,000x)

® However, for previously unattempted complex data
structures, declarative techniques lack usability

Qutline

Background
Simple example
Usability problems

Performance evaluation

Qutline

® Background

Basic Problem

We want to develop black-box generators for complex,
constrained data structures, in order to enable automated
testing of code that operates on these data structures

http://en.wikipedia.org/wiki/Red%E2%80%93bIa5 treeft/media/File:Red-
black_tree_example.svg

http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree#/media/File:Red-black_tree_example.svg

Specifying Data
Structure Generators

Two general approaches: imperative and declarative

® |mperative approaches feature loops and
assignment, and are focused on how to generate

® Declarative approaches lack imperative features,
and allow for logical descriptions of high-level
features focused on what to generate

Common Wisdom

® |mperative techniques are fast, but
potentially unwieldy

® Declarative techniques are slow, but easier
to use

Our Observation:
There are Hidden

Caveats to This
Common Wisdom

Performance Caveat

Imperative means fast?

® One |3 year old result

® Compares a SAl-based approach to a non-
SAT-based approach

® SAT is not the only way to write
declarative code

Usability Caveat

Declarative means expressive?

® Most complex data structure ever
generated: valid red/black trees

® These are not actually all that
complicated

® Nothing considers operations on the
data structures

Our Contribution

® TJest using a declarative approach that is not
SAT-based

® TJest with more complex data structures,
along with special variants of them

® E g, red/black trees which will rebalance
upon the insertion of some value k

Declarative Without SAT

® Our observation: related work has been
incrementally moving towards
implementing a constraint logic
programming (CLP) engine

® We will use CLP directly as our declarative
stand-in

® Re-use decades of existing work

Data Structures

Sorted linked lists
Red-black trees

Array heaps

ANI images (via grammars)
Skip lists

Splay trees

B-trees

Data Structures

® Sorted linked lists

Red-black trees

Array heaps

ANI images (via grammars)

Skip lists
Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array heaps

ANI images (via grammars)
Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array heaps

ANI images (via grammars)
Skip lists
Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees Covered in related work
Array heaps

ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array heaps

ANI images (via grammars)

Skip lists

Novel to this work

Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees

Array heaps

ANI images (via grammars)

Skip lists
Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees
Array heaps

ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees

Array heaps

ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees

Array heaps

ANI images (via grammars)
Skip lists

Splay trees

® B-trees

Special Variants

® For each of these data structures, we also
defined a special variant of them which
tends to indicate a more interesting version
for testing purposes

® Tried to select variants that stressed data
structure specific operations

® More details in the paper

Special Variants with an
Operational Nature

Red-black trees: need insertion and
rebalancing

Array heaps: need dequeueing
Splay trees: need splay

B-trees: need insertion and node splitting

We are the first to look at these operations in
the context of generation.

24

Qutline

® Simple example

Example: Sorted Linked Lists

Sorted Linked Lists

® Each element is between 0 and K

® A list contains between 0 and N elements

® Each element is < the element after it, if
applicable

® |.e,thelistis in ascending order

“Each element is between 0 and K”

“Each element is between 0 and K”

1nBound (K,

“Each element is between 0 and K”

1nBound (K,

“Each element is between 0 and K”

1nBound (K, Element)

0 #=<

FElement

“Each element is between 0 and K”

1nBound (K, Element)
0 #=< Element,

“Each element is between 0 and K”

1nBound (K, Element)
0 #=< Element,
Flement #=< K

“Each element is between 0 and K”

1nBound (K, Element)
0 #=< Element,
Flement #=< K.

“Each element is between 0 and K”

1nBound (K, Element)
0 #=< Element,
Flement #=< K.

Sorted Linked Lists

® Each element is between 0 and K

® A list contains between 0 and N elements

® Each element is < the element after it, if
applicable

® |.e,thelistis in ascending order

Sorted Linked Lists

® Each element is between 0 and K

® A list contains between 0 and N elements

® Each element is < the element after it, if
applicable

® |.e,thelistis in ascending order

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , L]) .

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > O

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)

sorted(, , []).

sorted (N, K, [Element])
N > O,

1nBound (K, Element).

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > O,
1nBound (K, Element).

sorted (N, K, [Elml, ElmZ|Rest])

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])

N > 0O,

1nBound (K, Element).
sorted (N, K, [Elml, ElmZ2|Rest])

N > 1

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > 0O,
1nBound (K, Element).
sorted (N, K, [Elml, ElmZ2|Rest])
N > 1,

Elml #=< Elm?

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > 0O,
1nBound (K, Element).
sorted (N, K, [Elml, ElmZ2|Rest])
N > 1,
Flml #=< Elm2,
i1nBound (K, Elml),

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > 0O,
1nBound (K, Element).
sorted (N, K, [Elml, ElmZ2|Rest])
N > 1,
Flml #=< Elm2,
i1nBound (K, Elml),
NewN 1s N - 1,

“A list contains between 0 and N elements
in ascending order, all between 0 and K”

5 sorted: (N, K, List)
sorted(, , []).
sorted (N, K, [Element])
N > 0O,
1nBound (K, Element).
sorted (N, K, [Elml, ElmZ2|Rest])
N > 1,
Flml #=< Elm2,
i1nBound (K, Elml),
NewN 1s N - 1,
sorted (NewN, K, [Elm2|Rest]).

Putting it All Together

5 sorted: (N, K, List)

o

%5 Query below:
?— sorted (3, 4, List)|, label (List).

Putting it All Together

5 sorted: (N, K, List)

o

%5 Query below:

?— sorted (3,

4,

List),

label (List) .

Putting it All Together

(N, K, List)

Query below:
°— sorted (3, 4, List), label (List).

LList
LList

List

List

Qutline

® Usability problems

Fundamental Problem:

Not Everything is as
Simple as a Sorted List

B-Tree Invariants

® |nclude:

® Every node has at most m children

® All leaves appear in the same level
® Decidedly logical in nature

® Fasy to express declaratively

An Operational Twist

® T[he invariants before define what a B-tree is

® What if we are interested in testing
operations on B-trees, specifically with trees
intentionally designed to stress corner cases!

® Under specific conditions, tree structure
must radically change upon element
Insertion

® Requires us to explain operations to the
generator

56

E-INSERT-NONFULL (x, X)
1 <- nl[x]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keviii1[x] <- key;[x]
1 <- 1 -1
kevit1[x] <= K
nix] <- n[x]
DISK-WRITE (x)
else while i 2 1 && k < kevy;[X]
do 1 <- 1 -1
1 <—- 1 + 1
DISK-READ (ci[x])
i1f nici[x]] = 2t - 1
then B-TREE-SPLIT-CHILD(...

57

|
—
5

+ 1

B
1:
2
3:
4
o:
0 :
]
38 :
9:

E-INSERT-NONFULL (x, X)
1 <- nl[x]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keviii1[x] <- key;[x]
1 <- 1 -1
kevit1[x] <= K
nix] <- n[x]
DISK-WRITE (x)
else while i 2 1 && k < kevy;[X]
do 1 <- 1 -1
1 <—- 1 + 1
DISK-READ (ci[x])
i1f nici[x]] = 2t - 1
then B-TREE-SPLIT-CHILD(...

58

|
—
5

How to implement?

+ 1

B
1:
2
3:
4
o:
0 :
]
38 :
9:

E-INSERT-NONFULL (x, X)
1 <- nl[x]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keviii1[x] <- key;[x]
1 <- 1 -1
kevyit1[x] <= K
nix] <- n[x]
DISK-WRITE (x)
else while i 2 1 && k < kevy;[X]
do 1 <- 1 -1
1 <—- 1 + 1
DISK-READ (ci[x])
i1f nici[x]] = 2t - 1
then B-TREE-SPLIT-CHILD(...

59

|
—
5

Imperative Setting: Implement Directly

+ 1

B
1
2
3:
4
O
o
-
3 :
9:

TE-INSERT-NONFULL (x, k)
1 <- n|[x]
1f leaf [x]
then while i 2 1 && k < key;[X]
do keviyi [x] <— kevy; [X]
1 <- 1 - 1
Imperative Specification

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;
1f (x.leaf) {
while (1 >= 1 && k < x.kevy[1]) {
X.key[1 + 1] = x.key[1];
=i - 1

Actual Imperative Implementation Code (Korat)

60

E-INSERT-NONFULL (x, k)

1 <- n|[x]

1f leaf[x]

then while i 2 1 && k < key;[X]

do keviii[x] <- kevy;:[x]
1 <=1 -1

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;

1f (x.leaf) {
while (1 >= 1 && k < x.key[1]) {
X.key[1 + 1] = x.key[1];
=i - 1

E-INSERT-NONFULL (x, k)

1 <- n|[x]

1f leaf[x]

then while i 2 1 && k < key;[X]

do keviii[x] <- kevy;:[x]
1 <=1 -1

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;

1f (x.leaf) {
while (1 >= 1 && k < x.key[1]) {
X.key[1 + 1] = x.key[1];
=i - 1

E-INSERT-NONFULL (x, k)

1 <- n|[x]

1f leaf[x]

then while i 2 1 && k < key;[X]

do kev:iii[x] <- kevy;[x]
1 <=1 -1

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;

1f (x.leaf) {

while (1 >= 1 && k < x.key[1]) {
X.key[1 + 1] = x.key[1];
=i - 1

E-INSERT-NONFULL (x, k)

1 <- n|[x]

1f leaf[x]

then while 1 2 1 && k < key;[x]

do (keviii[x] <- kevy;:[x]
1 <=1 -1

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;

1f (x.leaf) {

while (1 >= 1 && k < x.key[1]) {
X.key[1 + 1] = x.key[1];
R —

E-INSERT-NONFULL (x, k)

1 <- n|[x]

1f leaf[x]

then while i 2 1 && k < key;[X]
do keviqi[x] <- key;i[X]

1 <- 1 -1

void 1nsertNonFull (Node x, int k) {
int 1 = x.n;

1f (x.leaf) {
while (1 >= 1 && k < x.key[1]) {

X.key[1 + 1] = x.key[1];

C— 1 - 1

E-INSERT-NONFULL (x, k)|[=
1 <- nl[x]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keviii1[x] <- key;[x]
1 <- 1 -1
kevyit1[x] <= K
nix] <- n[x]
DISK-WRITE (x)
else while i 2 1 && k < kevy;[X]
do 1 <- 1 -1
1 <—- 1 + 1
DISK-READ (ci[x])
i1f nici[x]] = 2t - 1
then B-TREE-SPLIT-CHILD(...

66

|
—
5

Declarative Setting: Logical Implication

+ 1

B
1
2
3:
4
O
o
-
3 :
9:

E-INSERT-NONFULL (x, X)
1 <- nl[x]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keviii1[x] <- key;[x]
1 <- 1 -1
kevyit1[x] <= K
nix] <- n[x]
DISK-WRITE (x)
else|while i 2 1 && k < kevy;[Xx]
do 1 <- 1 -1
1 <—- 1 + 1
DISK-READ (ci[x])
i1f nici[x]] = 2t - 1
then B-TREE-SPLIT-CHILD(...

67

|
H
5

+ 1

B
1
2
3:
4
o:
0 :
]
38 :
9

E-TINSERT-NONFULL (x, k)
1 |<—=| n[xX]
1f leaf[x]
then while i =2 1 && k < kevy;[x]
do keyi+i[x] [<-]|key;[X]
1 |<—|]
kGYiH[X]
nix]| | <-
DISK-WRITE
else while 1
do 1
1(<—-| 1 + 1
DISK-READ (ci[x])
1f nci[x]] = 2t -
then B-TREE-SPLIT-CHILD(...)

68

|
—
"y

B
1
2
3:
4
o:
0 :
]
38 :
9

Our Observation: Imperative
Features are Desirable for

Modeling Operations on
Data Structures

Qutline

® Performance evaluation

Measuring Performance

® TJested all aforementioned data structures

and their special variants on Korat, UDITA,
and CLP (using GNU Prolog)

® Measured how quickly all data structures
within certain bounds could be generated,
with a 30 minute timeout

Seconds Small Bounds

(lower is
better)

2000.00000

B Korat o UDITA CLP

1500.00025

1000.00050
500.00075 | ‘
0.00100 .I -I I I [] l I

Lists Red-Black Heaps Image Skip Splay B-Trees

Seconds Small Bounds

(lower is
better)

2000.00000

B Korat o UDITA CLP

UDITA |Is Extremely Slow

1500.00025

1000.00050
500.00075 ‘
0.00100 .I -I I I [] l I

Lists Red-Black Heaps Image Skip Splay B-Trees

Seconds

(lower is Small Bounds

better) B Korat o CLP

150.00000

112.50025

75.00050

37.50075 I I | |
0.00100 — I H_ = =

Red-Black Heaps Image Skip Splay B-Trees

Seconds

(lower is Small Bounds

better) B Korat o CLP

150.00000

CLP Barely Registers

112.50025

75.00050

37.50075

0.00100
Red-Black Heaps Image ' Splay B-Trees

75

Medium Bounds

UDITA times out on everything
Korat times out on 5/ 14 experiments
CLP is generally ~30x - 1,000x faster

For B-trees, Korat and UDITA both

timeout, but CLP completes within a
single millisecond

Large Bounds

® Korat and UDITA timeout on everything

® Depending on the data structure, CLP takes
between ~/0 seconds and just under 30
minutes

On Usability

® |nformal argument

® No data structure took more than 90
minutes to specify in Korat or UDITA

® Code and algorithm reuse

® CLP variants always took significantly longer,
up to |10 hours for B-trees

® Existing code all imperative, with little
explanation of why it works

78

Conclusions

® CLP a declarative technique, dramatically
outperforms the imperative Korat and
UDITA,defying common wisdom

® Korat and UDITA allow for much easier
modeling than CLP entirely because they are
Imperative in nature

