
A Parallel Abstract
Interpreter for

JavaScript
Kyle Dewey Ben Hardekopf

University of California, Santa Barbara

1

Overall Contributions

• New analysis perspective established in
prior work is far more amenable to
parallelization than dataflow analysis

• A parallel abstract interpreter for JavaScript
based on this new perspective

• Speedups usually better than those of the
most closely related program analyses
(typically between 2-4X on 12 threads)

2

Dataflow Analysis

3

• Over a program’s control flow graph

• Each node represents an equation to solve

• Edges define interdependencies between
equations

• Overall, a system of equations

• Find a fixpoint of the system

Traditional Dataflow
Analysis

4

Traditional Dataflow
Analysis

5

n1

n2

n3

n4 n5

n6

Traditional Dataflow
Analysis

6

n1

n2

n3

n4 n5

n6

Traditional Dataflow
Analysis

INk = meet(OUTx)
for all predecessors x

7

n1

n2

n3

n4 n5

n6

Traditional Dataflow
Analysis

INk = meet(OUTx)
for all predecessors x

OUTk = Xfer(INk)

8

n1

n2

n3

n4 n5

n6

Traditional Dataflow
Analysis

INk = meet(OUTx)
for all predecessors x

while (!fix()) {
 repeat();
}

OUTk = Xfer(INk)

9

n1

n2

n3

n4 n5

n6

Dataflow Analysis
Problem #1

• Underlying assumption: deriving the
program’s control flow graph is cheap

• This is not true for JavaScript

• Higher-order functions

• Exceptions

• Implicit type conversions

10

Dataflow Analysis
Problem #2

• Fundamentally, dataflow analysis’ definition
assumes sequential behavior

• Each node acts as a synchronization
point

• Can end up calculating redundant info if
nodes are processed in arbitrary order

11

Our Approach

12

State Transition
Representation

13

• Prior work: utilize abstract interpretation
to form a widened state transition system

• Represent program execution as a
nondeterministic infinite state
transition system

• Analyze which states are reachable

• Representable as a tree

State Transition
Example

14

b = ⊤bool b = randBool();
if (b) {
 ...
} else {
 ...
}

b = true b = false

Computability and
Tractability

• Trees can be of exponential or infinite size

• Infinite loops can mean trees of infinite
depth

• To ensure a reasonably finite tree size, a
widening operator is employed

• Allows for states to be selectively
merged with each other

15

x = 0

int x = 0;
while (randBool()) {
 x++;
}

x = 1 halt

x = 2 halt

x = 0

halt

halt

x = ⊤

Before Widening After Widening
16

New Insight: This
Parallelizes Well

• The analysis and the widening component
are separate

• The analysis is an inherently massively
parallel tree-like state exploration

• The widening component selectively
injects sequential dependencies

17

Analysis Parameters

18

Parameter Our Instantiation for
JavaScript

When are states merged?
(existing)

Based on k-bounded call
strings (CFA)

Where are threads placed?
(new)

Each distinct context is
assigned its own thread

Evaluation

• On a series of open source real-world
benchmarks taking between 30s and 20m

• Recording true speedups (i.e., relative to
the preexisting sequential framework)

• Measure of scale and performance

19

20 Number of Cores

Sp
ee

du
p

Comparison to Related
Work

• Most existing work deals with C

• Our speedups are generally equal or
better, despite additional JS complexity

• Most existing parallel frameworks are
based on dataflow analysis

• Ad-hoc

• Requires control flow graphs

• Evaluation issues are common
21

Future Work

• Parallel experimentation with other
merging strategies and thread granularity
levels

• Preliminary data shows there is
progress that can be made

• Application to C and other languages

• Would allow for direct comparison to
related work

22

