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Teaser
• We identify several key assumptions which are 

made in the domain of SMT fuzzers

• We seek to empirically show these assumptions 
are false, and we already have data showing that 
common wisdom is incorrect

• We have already found over a dozen bugs across 
several popular SMT solvers, including Z3, CVC4, 
MathSAT5, and Boolector (still plenty to do)

• Including incorrect results

• Most promptly fixed by developers (1 week)
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Motivation

• SMT solvers are frequently employed in 
automated testing, synthesis, and 
verification

• Often assumed to be correct, and their 
correctness is vital
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Motivation
• Problem: SMT solvers can be, and often are, 

buggy

• Bugs are potentially devastating for 
downstream applications

• Automated testing: input tests the wrong 
component

• Synthesis: generated program does not 
have specified behavior

• Verification: proof does not actually hold
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Goal

• Find bugs in SMT solvers, before they cause 
downstream problems

• We employ black-box language fuzzing 
techniques for this purpose

• The inputs for SMT solvers are 
formulas written in SMT-LIB, a 
standardized language
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Background

• We did not invent language fuzzing
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The Testing Problem

Successful commercial computer systems contain tens
of millions of lines of handwritten software, all of
which is subject to change as competitive pressures
motivate the addition of new features in each release.
As a practical matter, quality is not a question of cor-
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the software is
deteriorating. 

Quality 
Testing is a major contributor to quality—it is the last
chance for the development organization to reduce
the number of bugs delivered to customers. Typically,
developers build a suite of tests that the software must
pass to advance to a new release. Three major sources
of such tests are the development engineers, who
know where to probe the weak points; commercial test
suites, which are the arbiters of conformance; and cus-
tomer complaints, which developers must address to
win customer loyalty. All three types of test cases are
relevant to customer satisfaction and therefore have
value to the developers. The resultant test suite for the
software under test becomes intellectual property,
encapsulates the accumulated experience of problem
fixes, and can contain more lines of code than the soft-
ware itself. 

Testing is always incomplete. The simplest measure
of completeness is statement coverage. Instrumentation
can be added to the software before it is tested. When
a test is run, the instrumentation generates a report
detailing which statements are actually executed.
Obviously, code that is not executed was not tested.
Random testing is a way to make testing more com-
plete. One value of random testing is introducing the
unexpected test—1,000 monkeys on the keyboard can
produce some surprising and even amusing input! The
traditional approach to acquiring such input is to let
university students use the software. 

Testing software is an active field of endeavor.
Interesting starting points for gathering background

Differential Testing 
for Software 

William M. McKeeman 

Differential testing, a form of random testing, 
is a component of a mature testing technology
for large software systems. It complements
regression testing based on commercial test
suites and tests locally developed during prod-
uct development and deployment. Differential
testing requires that two or more comparable
systems be available to the tester. These sys-
tems are presented with an exhaustive series 
of mechanically generated test cases. If (we
might say when) the results differ or one of 
the systems loops indefinitely or crashes, the
tester has a candidate for a bug-exposing test.
Implementing differential testing is an interest-
ing technical problem. Getting it into use is an
even more interesting social challenge. This
paper is derived from experience in differential
testing of compilers and run-time systems at
DIGITAL over the last few years and recently 
at Compaq. A working prototype for testing 
C compilers is available on the web. 
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Abstract
Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;

4 return x > y;

5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front
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Abstract
Fuzz testing is an automated technique providing random
data as input to a software system in the hope to expose
a vulnerability. In order to be effective, the fuzzed input
must be common enough to pass elementary consistency
checks; a JavaScript interpreter, for instance, would only
accept a semantically valid program. On the other hand,
the fuzzed input must be uncommon enough to trigger
exceptional behavior, such as a crash of the interpreter.
The LangFuzz approach resolves this conflict by using
a grammar to randomly generate valid programs; the
code fragments, however, partially stem from programs
known to have caused invalid behavior before. LangFuzz
is an effective tool for security testing: Applied on the
Mozilla JavaScript interpreter, it discovered a total of
105 new severe vulnerabilities within three months of
operation (and thus became one of the top security bug
bounty collectors within this period); applied on the PHP
interpreter, it discovered 18 new defects causing crashes.

1 Introduction

Software security issues are risky and expensive.
In 2008, the annual CSI Computer Crime & Security sur-
vey reported an average loss of 289,000 US$ for a single
security incident. Security testing employs a mix of tech-
niques to find vulnerabilities in software. One of these
techniques is fuzz testing—a process that automatically
generates random data input. Crashes or unexpected be-
havior point to potential software vulnerabilities.

In web browsers, the JavaScript interpreter is partic-
ularly prone to security issues; in Mozilla Firefox, for
instance, it encompasses the majority of vulnerability
fixes [13]. Hence, one could assume the JavaScript in-
terpreter would make a rewarding target for fuzz test-
ing. The problem, however, is that fuzzed input to a

⇤At the time of this study, Christan Holler was writing his master
thesis at Saarland University. He is now employed at Mozilla.

JavaScript interpreter must follow the syntactic rules of
JavaScript. Otherwise, the JavaScript interpreter will re-
ject the input as invalid, and effectively restrict the test-
ing to its lexical and syntactic analysis, never reaching
areas like code transformation, in-time compilation, or
actual execution. To address this issue, fuzzing frame-
works include strategies to model the structure of the de-
sired input data; for fuzz testing a JavaScript interpreter,
this would require a built-in JavaScript grammar.

Surprisingly, the number of fuzzing frameworks that
generate test inputs on grammar basis is very limited [7,
17, 22]. For JavaScript, jsfunfuzz [17] is amongst the
most popular fuzzing tools, having discovered more that
1,000 defects in the Mozilla JavaScript engine. jsfunfuzz
is effective because it is hardcoded to target a specific
interpreter making use of specific knowledge about past
and common vulnerabilities. The question is: Can we
devise a generic fuzz testing approach that nonetheless
can exploit project-specific knowledge?

In this paper, we introduce a framework called
LangFuzz that allows black-box fuzz testing of engines
based on a context-free grammar. LangFuzz is not bound
against a specific test target in the sense that it takes the
grammar as its input: given a JavaScript grammar, it will
generate JavaScript programs; given a PHP grammar, it
will generate PHP programs. To adapt to specific targets,
LangFuzz can use its grammar to learn code fragments
from a given code base. Given a suite of previously fail-
ing programs, for instance, LangFuzz will use and re-
combine fragments of the provided test suite to generate
new programs—assuming that a recombination of pre-
viously problematic inputs has a higher chance to cause
new problems than random input.

The combination of fuzz testing based on a language
grammar and reusing project-specific issue-related code
fragments makes LangFuzz an effective tool for secu-
rity testing. Applied on the Mozilla JavaScript engine,
it discovered a total of 105 new vulnerabilities within
three months of operation. These bugs are serious and

1

5



Background

• We did not invent language fuzzing

100 Digital Technical Journal Vol. 10 No. 1 1998

The Testing Problem

Successful commercial computer systems contain tens
of millions of lines of handwritten software, all of
which is subject to change as competitive pressures
motivate the addition of new features in each release.
As a practical matter, quality is not a question of cor-
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the software is
deteriorating. 

Quality 
Testing is a major contributor to quality—it is the last
chance for the development organization to reduce
the number of bugs delivered to customers. Typically,
developers build a suite of tests that the software must
pass to advance to a new release. Three major sources
of such tests are the development engineers, who
know where to probe the weak points; commercial test
suites, which are the arbiters of conformance; and cus-
tomer complaints, which developers must address to
win customer loyalty. All three types of test cases are
relevant to customer satisfaction and therefore have
value to the developers. The resultant test suite for the
software under test becomes intellectual property,
encapsulates the accumulated experience of problem
fixes, and can contain more lines of code than the soft-
ware itself. 

Testing is always incomplete. The simplest measure
of completeness is statement coverage. Instrumentation
can be added to the software before it is tested. When
a test is run, the instrumentation generates a report
detailing which statements are actually executed.
Obviously, code that is not executed was not tested.
Random testing is a way to make testing more com-
plete. One value of random testing is introducing the
unexpected test—1,000 monkeys on the keyboard can
produce some surprising and even amusing input! The
traditional approach to acquiring such input is to let
university students use the software. 

Testing software is an active field of endeavor.
Interesting starting points for gathering background

Differential Testing 
for Software 

William M. McKeeman 

Differential testing, a form of random testing, 
is a component of a mature testing technology
for large software systems. It complements
regression testing based on commercial test
suites and tests locally developed during prod-
uct development and deployment. Differential
testing requires that two or more comparable
systems be available to the tester. These sys-
tems are presented with an exhaustive series 
of mechanically generated test cases. If (we
might say when) the results differ or one of 
the systems loops indefinitely or crashes, the
tester has a candidate for a bug-exposing test.
Implementing differential testing is an interest-
ing technical problem. Getting it into use is an
even more interesting social challenge. This
paper is derived from experience in differential
testing of compilers and run-time systems at
DIGITAL over the last few years and recently 
at Compaq. A working prototype for testing 
C compilers is available on the web. 

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract
Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;

4 return x > y;

5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front
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Abstract
Fuzz testing is an automated technique providing random
data as input to a software system in the hope to expose
a vulnerability. In order to be effective, the fuzzed input
must be common enough to pass elementary consistency
checks; a JavaScript interpreter, for instance, would only
accept a semantically valid program. On the other hand,
the fuzzed input must be uncommon enough to trigger
exceptional behavior, such as a crash of the interpreter.
The LangFuzz approach resolves this conflict by using
a grammar to randomly generate valid programs; the
code fragments, however, partially stem from programs
known to have caused invalid behavior before. LangFuzz
is an effective tool for security testing: Applied on the
Mozilla JavaScript interpreter, it discovered a total of
105 new severe vulnerabilities within three months of
operation (and thus became one of the top security bug
bounty collectors within this period); applied on the PHP
interpreter, it discovered 18 new defects causing crashes.

1 Introduction

Software security issues are risky and expensive.
In 2008, the annual CSI Computer Crime & Security sur-
vey reported an average loss of 289,000 US$ for a single
security incident. Security testing employs a mix of tech-
niques to find vulnerabilities in software. One of these
techniques is fuzz testing—a process that automatically
generates random data input. Crashes or unexpected be-
havior point to potential software vulnerabilities.

In web browsers, the JavaScript interpreter is partic-
ularly prone to security issues; in Mozilla Firefox, for
instance, it encompasses the majority of vulnerability
fixes [13]. Hence, one could assume the JavaScript in-
terpreter would make a rewarding target for fuzz test-
ing. The problem, however, is that fuzzed input to a

⇤At the time of this study, Christan Holler was writing his master
thesis at Saarland University. He is now employed at Mozilla.

JavaScript interpreter must follow the syntactic rules of
JavaScript. Otherwise, the JavaScript interpreter will re-
ject the input as invalid, and effectively restrict the test-
ing to its lexical and syntactic analysis, never reaching
areas like code transformation, in-time compilation, or
actual execution. To address this issue, fuzzing frame-
works include strategies to model the structure of the de-
sired input data; for fuzz testing a JavaScript interpreter,
this would require a built-in JavaScript grammar.

Surprisingly, the number of fuzzing frameworks that
generate test inputs on grammar basis is very limited [7,
17, 22]. For JavaScript, jsfunfuzz [17] is amongst the
most popular fuzzing tools, having discovered more that
1,000 defects in the Mozilla JavaScript engine. jsfunfuzz
is effective because it is hardcoded to target a specific
interpreter making use of specific knowledge about past
and common vulnerabilities. The question is: Can we
devise a generic fuzz testing approach that nonetheless
can exploit project-specific knowledge?

In this paper, we introduce a framework called
LangFuzz that allows black-box fuzz testing of engines
based on a context-free grammar. LangFuzz is not bound
against a specific test target in the sense that it takes the
grammar as its input: given a JavaScript grammar, it will
generate JavaScript programs; given a PHP grammar, it
will generate PHP programs. To adapt to specific targets,
LangFuzz can use its grammar to learn code fragments
from a given code base. Given a suite of previously fail-
ing programs, for instance, LangFuzz will use and re-
combine fragments of the provided test suite to generate
new programs—assuming that a recombination of pre-
viously problematic inputs has a higher chance to cause
new problems than random input.

The combination of fuzz testing based on a language
grammar and reusing project-specific issue-related code
fragments makes LangFuzz an effective tool for secu-
rity testing. Applied on the Mozilla JavaScript engine,
it discovered a total of 105 new vulnerabilities within
three months of operation. These bugs are serious and

1
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Fuzzing and Delta-Debugging SMT Solvers

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Abstract. SMT solvers are widely used as core engines in many applications. There-
fore, robustness and correctness are essential criteria. Current testing techniques used
by developers of SMT solvers do not satisfy the high demand for correct and robust
solvers, as our testing experiments show. To improve this situation, we propose to
complement traditional testing techniques with grammar-based blackbox fuzz test-
ing, combined with delta-debugging. We demonstrate the e↵ectiveness of our ap-
proach and report on critical bugs and incorrect results which we found in current
state-of-the-art SMT solvers for bit-vectors and arrays.

1 Introduction

Many applications use Satisfiability Modulo Theories (SMT) solvers as core deci-
sion engines. For example, SMT solvers are used to generate test cases, to find
bugs [5,11,12,30,31], and to verify systems [2,6,19,20,21,23]. A crashing SMT solver
may lead to a crash of the application, or even worse, an incorrect solver may lead
to wrong results. For example, if an SMT solver concludes unsat although the input
formula is sat, a verification system may spuriously conclude that an implementation
respects its specification, i.e. defects are missed.

In this paper we show that although there is a high demand for robustness and
correctness of SMT solvers, almost all state-of-the-art solvers, at least for bit-vectors
and arrays, were broken at the time of our tests. They contained defects that led to
crashes, or even worse, to incorrect results where the solver concludes sat although
the formula is unsat, or vice versa. We demonstrate that many critical defects can
be found by a testing technique called grammar-based blackbox fuzz testing, and
propose to complement traditional testing approaches with this technique. Moreover,
we propose to integrate delta-debugging [34] into the debugging process in order to
minimize failure-inducing SMT formulas.

2 Fuzzing

Fuzzing is a powerful testing technique which is typically used in the domains of
software security and quality assurance [28,29]. The main idea of the original fuzzing
approach is to test programs with random inputs in order to detect security bugs,
e.g. bu↵er overflows. Fuzz testing techniques were already applied by software engi-
neers around 1980. For example, a tool called ”the monkey“ was developed to test
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bugs [5,11,12,30,31], and to verify systems [2,6,19,20,21,23]. A crashing SMT solver
may lead to a crash of the application, or even worse, an incorrect solver may lead
to wrong results. For example, if an SMT solver concludes unsat although the input
formula is sat, a verification system may spuriously conclude that an implementation
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In this paper we show that although there is a high demand for robustness and
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and arrays, were broken at the time of our tests. They contained defects that led to
crashes, or even worse, to incorrect results where the solver concludes sat although
the formula is unsat, or vice versa. We demonstrate that many critical defects can
be found by a testing technique called grammar-based blackbox fuzz testing, and
propose to complement traditional testing approaches with this technique. Moreover,
we propose to integrate delta-debugging [34] into the debugging process in order to
minimize failure-inducing SMT formulas.

2 Fuzzing

Fuzzing is a powerful testing technique which is typically used in the domains of
software security and quality assurance [28,29]. The main idea of the original fuzzing
approach is to test programs with random inputs in order to detect security bugs,
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Automated Testing and Debugging

of SAT and QBF Solvers

Robert Brummayer, Florian Lonsing and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Abstract. Robustness and correctness are essential criteria for SAT and
QBF solvers. We develop automated testing and debugging techniques
designed and optimized for SAT and QBF solver development. Our fuzz
testing techniques are able to find critical solver defects that lead to
crashes, invalid satisfying assignments and incorrect satisfiability results.
Moreover, we show that sequential and concurrent delta debugging tech-
niques are highly e↵ective in minimizing failure-inducing inputs.

1 Introduction

Satisfiability solving has been shown to be a competitive problem solving tech-
nique that is used in many di↵erent domains such as verification, test case gener-
ation, scheduling, computational biology and artificial intelligence. For a recent
survey on satisfiability solving we refer the reader to [8]. Recent advances of
propositional satisfiability (SAT) solvers and quantified boolean formula (QBF)
solvers are driven by competitions and real industrial applications such as formal
hardware and software verification.

Essential criteria of satisfiability solvers are robustness and correctness. SAT
and QBF solvers are used as core decision engines and the clients heavily de-
pend on these important criteria. For instance, an incorrect SAT solver used as
decision engine in a formal verification framework may lead to incorrect veri-
fication results, i.e. either the system may be spuriously proven to be correct
or the verification framework generates a spurious counter-example. Moreover,
wrong satisfying assignments (models) may be mapped to spurious verification
counter-examples that hinder the overall verification process.

While a large part of current research focuses on speeding up SAT and QBF
solving with various techniques such as improved decision heuristics and low-
level optimizations, there are, to the best of our knowledge, no rigorous sci-
entific publications about automated testing and debugging techniques for SAT
and QBF solvers. This paper tries to improve this situation by introducing auto-
mated state-of-the-art testing and (multi-threaded) delta debugging techniques,
designed and optimized for SAT and QBF solvers. Our experimental results are
available at http://fmv.jku.at/brummayer/fuzz-dd-sat-qbf.tar.7z. Every
tool is available at http://fmv.jku.at/software/.
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Existing Weaknesses

• Focus has been on syntax, not semantics

• E.g., formulas that syntactically contain 
0, as opposed to formulas that evaluate 
to 0 somewhere

• Tests crafted to “look” like typical inputs, or 
be time-consuming to solve

• Not focused on what is difficult to 
implement

7



Common Wisdom

• Large inputs mean more bugs

• Random search performs better instead of 
bounded depth-first

• Not just for SMT solvers, but for language 
fuzzing overall

• Very little empirical evidence backing these 
claims (blog posts and a technical report)

8



Hypotheses (1, 2)
• Semantics-guided approaches can find bugs that 

purely syntax-oriented approaches practically 
cannot

• Suggested to be true by our own prior work

• Constraining the search space to focus on 
different subsets can effectively find additional 
bugs

• Purely syntactic constraining shown effective 
in Swarm Testing
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Hypotheses (3, 4)

• Large inputs are not necessarily better for 
finding bugs

• Suggested to be true by the need for input 
reducers, and by our own prior work

• Random search is not necessarily better than 
bounded depth-first search

• Suggested to be true by our own prior work
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Key Observation
• These four hypotheses are orthogonal
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Overall Design 
Philosophy

• Gather data for each point in this 4D 
space, specific to SMT solvers

• Determine which setups find the most 
bugs, and which ones find the same bugs

• Ultimately, figure out which setups 
work well and which do not for SMT 
solvers
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Rest of Talk
How each of these positions in the diagram 

can be filled in, forming different fuzzers

Small 
Inputs

Big 
Inputs

Random 
Search

Bounded 
DFS

Syntax 
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Feature 
Subsets
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Outline

• Motivation and background

• Developing SMT fuzzers

• Evaluation and results so far

• Conclusion



Traditional Syntax-Based 
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Necessary to have, but only for comparison.  Not the focus 
of this work.
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Semantic-Based Fuzzers
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Number of different strategies, depending on the
particular semantics
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ASE’15 Paper

• In prior work, we looked at fuzzing the 
typechecker in the Rust langauge

• Focus on static semantics: types

• Guiding principles from that work can be 
applied to fuzzing SMT solvers
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Application to SMT Solvers
• SMT-LIB is statically typed, and typing rules are 

described (though not formalized)

• These typing rules can be used to generate 
well-typed programs

• Suitable for ensuring that solver 
typecheckers accept inputs properly

• Suitable for differential testing

• Requires implementing a typechecker for SMT-
LIB using constraint logic programming (CLP)
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A Twist for Dynamic 
Semantics

• For a static semantics: implement typing 
rules in CLP

• For a dynamic semantics: implement a 
definitional oracle

• Inputs generated explore the 
semantics, by construction

• Edge cases fall out naturally (e.g., 
division by zero as a special case)
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Consistency-Based 
Testing

• Another guiding principle from ASE’15: 
devise methods to test internal consistency

• Based on generating pairs of inputs, which 
should behave in the same way

• E.g., both SAT or UNSAT

• Generally do not know true correct result

19



Consistency for SMT-LIB

• We devise two novel approaches for finding 
consistency bugs in SMT-LIB

• One: equivalence through translation

• Two: logical implications of 
mathematical functions
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Translation Equivalence

• SMT-LIB features a variety of theories, which 
describe different kinds of domains and 
operations that can be reasoned about

• E.g., integers, bitvectors, floating point

• Some queries can be translated between 
different theories, and should behave the 
same after translation
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Translation Equivalence 
Example



X is a one bit bitvector
Y is a one bit bitvector
Z is X + Y
assert Z == 1

Theory of Bitvectors
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X is a one bit bitvector
Y is a one bit bitvector
Z is X + Y
assert Z == 1

Theory of Bitvectors
Theory of Integers

0 <= X <= 1
0 <= Y <= 1
T = X + Y
Z = (if T == 2 then 0 else T)
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X is a one bit bitvector
Y is a one bit bitvector
Z is X + Y
assert Z == 1

Theory of Bitvectors
Theory of Integers

0 <= X <= 1
0 <= Y <= 1
T = X + Y
Z = (if T == 2 then 0 else T)
assert Z == 1

22



Exploiting Mathematical 
Purity for Consistency 

Checking



Implication of 
Mathematical Functions
• SMT-LIB is a mathematically pure language

• Solvers generally implement the theory of 
uninterpreted functions with equality (EUF), 
which essentially reasons over all possible 
function definitions

f(1, 2) == f(1, 2), ∀f
f(1, 2) != f(2, 1), ∀f
f(1, 2) != g(1, 2), ∀f

23



Exploiting Purity to 
Find Consistency Bugs

• If something holds in EUF, it must hold for 
any other theory
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Find Consistency Bugs

• If something holds in EUF, it must hold for 
any other theory

f(1, 2) == f(1, 2), ∀f

integer_add(1, 2) == integer_add(1, 2)

bitvec_add(1, 2) == bitvec_add(1, 2)
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Exploiting Purity to 
Find Consistency Bugs
• Similarly, if something does not hold in 

another theory, it must not hold in EUF
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Exploiting Purity to 
Find Consistency Bugs
• Similarly, if something does not hold in 

another theory, it must not hold in EUF

integer_add(1, 2) != integer_add(2, 3)
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Exploiting Purity to 
Find Consistency Bugs
• Similarly, if something does not hold in 

another theory, it must not hold in EUF

integer_add(1, 2) != integer_add(2, 3)

f(1, 2) != f(2, 3), ∀f
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Semantic Feature 
Subsets

Small 
Inputs

Big 
Inputs

Random 
Search

Bounded 
DFS

??? Traditional

Our prior 
work ???

Syntax 
Based

Semantic
Based

All 
Features

Feature 
Subsets

Traditional
Our prior 

work

Traditional 
w/ Swarm 

Testing
???

Many possible different instantiations
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Semantic Feature 
Subsets

• In our case, we focus specifically on the 
theory of floating point

• Bleeding edge (only two production-
quality solvers to test against)

• Features a semi-formal semantics

• Quite complex
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Semantic Feature 
Subsets

• We plan to focus on computations that 
deal with NaN, +/- 0, +/- ∞, subnormal 
numbers

• All intuitively difficult

• Some have been challenging to 
implement ourselves

• Not yet complete

28



Varying Input Sizes

Small 
Inputs

Big 
Inputs

Random 
Search
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??? Traditional

Our prior 
work ???

Syntax 
Based

Semantic
Based

All 
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Feature 
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w/ Swarm 

Testing
???

Fairly trivial, and generally easily composable.
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Search Strategy Variation
Adjusting the search strategy is more difficult, and requires 

novel techniques

Small 
Inputs

Big 
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Search Strategy

• Historically, the search strategy is 
fundamentally defined by the underlying 
generation technique, and cannot be varied 
without devising a whole new technique

• E.g. cannot run the same fuzzer in a 
random mode and an exhaustive mode

• This is true even for CLP
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Novel Abstraction

• We define a novel abstraction in CLP for 
varying the search strategy dynamically

• Fuzzer code is written in a strategy-
agnostic way

• Accomplished via the use of a CLP 
metainterpreter
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Abstraction Idea

• Ultimately, the abstraction is parameterized 
by a nondeterministic relation choose:

choose([C], C)

Given a list of 
choices... ...choose one 

nondeterministically
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Possible Instantiations

• Randomly select a single element: random 
search without backtracking

• Nondeterministically select all in a fixed 
order: depth-first search

• Many more possible, including more 
complex ones seen in advanced fuzzers
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Caveats

• Not all search strategies fit into this 
abstraction

• E.g., breadth-first search

• Fundamentally, choice is applied 
when selecting the next child to 
process in a built-in depth-first search

• Still encompasses all search strategies in 
practice which we are aware of
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In Summary
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We know how to cover each cell.  Onto implementation 
and evaluation!
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Fuzzers Implemented 
so Far
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Traditional Syntactic 
Fuzzer

Preexisting, thanks to others
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Equivalency-Based Fuzzer
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Uses translation between the theory of bitvectors and the 
theory of integers
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Fuzzer Based on Well-
Typedness
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Generates well-typed SMT-LIB formulas
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Remaining Fuzzers

• Still many fuzzers left to implement

• All are planned out

• Key point: most spaces are empty, but we 
have enough to compare against more 
traditional fuzzing strategies
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Results so Far

• Traditional fuzzer: nothing on Z3 in 
past year; unknown for other solvers

• Direct from the Z3 team

• Equivalency-based fuzzer: nothing so far 
(approximately two weeks)

• Fuzzer based on well-typed programs: 15 
bugs
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Bugs Found
• Include crashes and incorrect results

• Bitvector division by zero is tricky

• Floating point is problematic on 
numbers consisting of just a few bits

• Surprisingly, quite a few in Z3

• One required communication with 
standards committee

• Most fixed within one week of reporting
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Key Points
• Common wisdom: large inputs are 

necessary to find bugs

• False: all bugs found involve small 
formulas.  Some become exponentially 
less likely with larger formulas

• Common wisdom: random search is 
necessary to find bugs

• False: at least for small formulas, 
depth-first search works fine
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In Conclusion

• While this is still incomplete, we have 
already accumulated some evidence against 
the common wisdom

• We are transitively improving the reliability 
of popular SMT solvers

• Still lots more to do
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