
Mind Your Metrics: How 
(Not) to Evaluate a Fuzzer

Kyle Dewey, Mehmet Emre, Ben Hardekopf



Teaser
• We argue that fuzzers are best evaluated by a 

quantitative comparison of unique bugs found

• We define an automated technique to accurately 
identify unique bugs found, dramatically simplifying 
this comparison

• We show that commonly used alternative metrics 
often disagree with the metric of unique bugs 
found, making them ultimately useless

• 24 new bugs found in SMT solvers (including Z3); 
correctness bugs found in each solver tested

1



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion





Automated Testing 
Motivation

• Writing correct software is hard

• Writing tests is time-consuming

• CPU cycles are cheap

2



Background: Fuzzing 
and Differential Testing

• Idea: generate an input via some process, 
known as a fuzzer

• Run input on different implementations

• If implementations disagree on result, bug 
has been found

2



Fuzzer

3



Fuzzer

Generates

function foo() { ... }
...
bar();

Test Input

3



Fuzzer

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

3



Fuzzer

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

3



Fuzzer

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

Mismatch: bug
3



Fuzzer

Generates

function foo() { ... }
...
bar();

4



Fuzzer 1

Generates

function foo() { ... }
...
bar();

Fuzzer 2

Generates

function baz() { ... }
...
blah();

4



Fuzzing is Broad
• Fuzzing is an active area of research

• Many existing tools available

• Many more fuzzing techniques available

5



Fuzzing is Broad
• Fuzzing is an active area of research

• Many existing tools available

• Many more fuzzing techniques available

• From a user perspective: which fuzzing 
technique should I apply for my domain?

5



Fuzzing is Broad
• Fuzzing is an active area of research

• Many existing tools available

• Many more fuzzing techniques available

• From a user perspective: which fuzzing 
technique should I apply for my domain? 

• From a research perspective, why do we 
need a new fuzzing technique?

5



Fuzzing is Broad
• Fuzzing is an active area of research

• Many existing tools available

• Many more fuzzing techniques available

• From a user perspective: which fuzzing 
technique should I apply for my domain? 

• From a research perspective, why do we 
need a new fuzzing technique?

Answering these questions requires both a metric to 
compare fuzzers and a way of gathering this metric. 5



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion



“Obvious” metric: Unique 
Bugs Found per Unit Time

6



Fuzzer 1

“Obvious” metric: Unique 
Bugs Found per Unit Time

6



Fuzzer 1

Fuzzer 2

“Obvious” metric: Unique 
Bugs Found per Unit Time

6



Fuzzer 1

Fuzzer 2

“Obvious” metric: Unique 
Bugs Found per Unit Time

Clear winner:
Fuzzer 2

6



“Obvious” metric: Unique 
Bugs Found per Unit Time

Fuzzer 1

6



“Obvious” metric: Unique 
Bugs Found per Unit Time

Fuzzer 1 Fuzzer 2
O

verlap

Non-comparable

6



“Obvious” metric: Unique 
Bugs Found per Unit Time

Fuzzer 1 Fuzzer 2
O

verlap

Non-
comparable...

6



“Obvious”

• This metric (unique bugs found) is seldom 
used

• Underlying reason why: it is exceedingly 
difficult to collect

7



Fuzzer

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

Mismatch: bug
8



Fuzzer

Generates

Test Input
function baz() { ... }
...
boo();

Executed on

8 4 8
Produce

Mismatch: bug
8



Fuzzer

Generates

Test Input
function baz() { ... }
...
boo();

Executed on

8 4 8
Produce

Mismatch: bug

Question: is this the same bug as before, or 
a whole new bug?

8



Unique Bugs?

• Ultimately, only the developers can answer 
this question

• Existing approaches require developer 
feedback and lots of manual effort

• End result: only one quantitative 
comparison of different fuzzing techniques 
in the literature uses this metric (that we 
know of), and it was done incorrectly

9



Workaround 

• A number of “surrogate” metrics have been 
used, which are more easily collected

• The fundamental validity of these metrics 
has never before been evaluated

10



Surrogate #1: Crashes 
with Stack Traces

11



Surrogate #1: Crashes 
with Stack Traces

Input: 217
Output:

ASSERTION VIOLATION: line 32 in main.c

11



Surrogate #1: Crashes 
with Stack Traces

Input: 217
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 438
Output:

ASSERTION VIOLATION: line 32 in main.c

11



Surrogate #1: Crashes 
with Stack Traces

Input: 217
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 438
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 60
Output:

ASSERTION VIOLATION: line 91 in foo.c
11



Surrogate #1: Crashes 
with Stack Traces

Input: 217
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 438
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 60
Output:

ASSERTION VIOLATION: line 91 in foo.c

Bug 1

11



Surrogate #1: Crashes 
with Stack Traces

Input: 217
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 438
Output:

ASSERTION VIOLATION: line 32 in main.c

Input: 60
Output:

ASSERTION VIOLATION: line 91 in foo.c

Bug 1

Bug 2

11



Surrogate #1: Crashes 
with Stack Traces

• Problem: ignores correctness bugs entirely

• In so doing, assumes that crash bugs 
behave similarly as correctness bugs

• Multiple fuzzing techniques exist which are 
specialized for finding correctness bugs

• Ergo, we know this assumption is invalid in 
general

12



Surrogate #2: Count 
Bug-Inducing Inputs

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

function baz() { ... }
...
boo();

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

function baz() { ... }
...
boo();

Two Bug-
Inducing 

Inputs Found

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

function foo() { ... }
...
bar();

Same 
Input

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

function foo() { ... }
...
bar();

Same 
Input

Two Bug-
Inducing 

Inputs Found

13



Surrogate #2: Count 
Bug-Inducing Inputs

function foo() { ... }
...
bar();

function foo() { ... }
...
bar();

Same 
Input

Two Bug-
Inducing 

Inputs Found

Techniques exist which very nearly do this.
13



Surrogate #2: Count 
Bug-Inducing Inputs
• Assumes that there is a one-to-one 

correspondence between bug-inducing 
inputs and bugs

• No evidence exists to confirm or 
refute this assumption in general

• Can very clearly break under certain 
circumstances

• This metric is easy to measure and wildly 
popular

14



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion



Goal for An Automated 
Approach

• Goal: be able to automatically derive 
the number of unique bugs found by a given 
fuzzer

• For both crash and correctness bugs

• Minimal manual effort

15



Assumptions

• The system under test is under version 
control, and each commit fixes at most one bug

• Past bugs behave similarly to new bugs

• We will actually test an older version of 
the software

16



Approach

17



V1 V2 V3 V4 V5 V6

Approach

17



V1 V2 V3 V4 V5 V6

Three tests (T1, T2, T3) expose some number of 
bugs ≤ 3 on version V1

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Bug

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Bug

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Bug

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Not bug

Approach

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

17



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Not 
bug

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Fixed in

18



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Fixed in

T3

Bug

19



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Fixed in

T3

Bug

19



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Fixed in

T3

Bug

19



V1 V2 V3 V4 V5 V6

Idea: walk the versions until we hit one where a 
given test no longer triggers a bug.

T1

Approach

Fixed in

T2

Fixed in

T3

Not bug

19



V1 V2 V3 V4 V5 V6

By the assumption that each version fixes at most 
one bug, T1 and T3 both trigger one bug (fixed in 
V4), and T2 triggers another bug (fixed in V6).

T1,T3

Approach

Fixed in

T2

Fixed in

19



V1 V2 V3 V4 V5 V6

By the assumption that each version fixes at most 
one bug, T1 and T3 both trigger one bug (fixed in 
V4), and T2 triggers another bug (fixed in V6).

T1,T3

Approach

Fixed in

T2

Fixed in

End result: two unique bugs found

19



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

We could run out of versions on some inputs...

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



V1 V2 V3 V4 V5 V6

By the assumption that past bugs behave like new 
bugs, this is not significant.

T1,T3

Approach

Fixed in

T2

Fixed in

T4

Bug

20



New Bugs

• Can still report these bugs using existing 
approaches

• Prompts developers to create new 
versions which fix the bugs

• Requires manual effort, but only if the 
evaluator wants to drop the 
assumption that new bugs behave like 
old ones, and then only for select bugs

• Existing approach is pure manual effort
21



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion



Experimental Goal

• We have a technique for easily measuring 
unique bugs

• Want to see how unique bugs compares to 
the aforementioned surrogate metrics

• First time any such comparison has 
been performed

• Can answer whether or not these 
surrogate metrics are worth collecting

22



Systems Under Test

• Interested in testing SMT solvers

• Answer queries like x ≤7 ∧ y ≥ 8

• Vitally important in software 
verification, among many others

• Solvers can be buggy, and buggy solvers 
mean invalid proofs

• Looked at Z3, CVC4, MathSAT5, and 
Boolector

23



Experimental Setup
• Developed four pairs of fuzzers for SMT-LIB

• Each of the two fuzzers in a pair was 
radically different, but both attempted to 
test the same part of SMT-LIB

• Whole pairs of fuzzers are not directly 
comparable to each other (each pair tests 
a distinct subset of SMT-LIB)

24



Experimental Setup
• Developed four pairs of fuzzers for SMT-LIB

• Each of the two fuzzers in a pair was 
radically different, but both attempted to 
test the same part of SMT-LIB

• Whole pairs of fuzzers are not directly 
comparable to each other (each pair 
tests a distinct subset of SMT-LIB)

F1 F2

Pair 1

(e.g., integers)

F3 F4

Pair 2

(e.g., BV)

F5 F6

Pair 3

(e.g., FP)

F7 F8

Pair 4

(e.g., SAT)
24



Measurement
• Fuzzers within a pair are directly 

comparable to each other

• For each metric, see which fuzzer in the 
pair is better

• Question: do surrogate metrics agree 
with the metric of unique bugs found?

F1 F2

Pair 1

(e.g., integers)

F3 F4

Pair 2

(e.g., BV)

F5 F6

Pair 3

(e.g., FP)

F7 F8

Pair 4

(e.g., SAT)
25



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

Only in 2/4 cases did all three metrics agree 26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

Crash bugs usually agreed with unique bugs... 26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

...though not entirely (and we know they don’t in general).26



Unique Bugs Crash Bugs Bug-Inducing 
Inputs

F1

F2

F3

F4

F5

F6

F7

F8

2 0 231,254

2 1 17,744

6 2 260,085

1 0 2,800

9 3 20,796

6 2 73,382

12 2 11,917

3 0 374

Bug-inducing inputs does not correlate to bugs found. 26



Data Elided

• We looked at five other metrics, based on 
either bugs found or bug-triggering inputs

• Data for these metrics is very similar to that 
previously shown

27



Take-Home Points

• Take-home point #1: metrics based on actual 
bugs found tend to be consistent with each 
other (read: useful for comparison)

• Take-home point #2: metrics based on bug-
triggering inputs look completely random 
(read: useless for comparison)

28



Take-Home Points

• Take-home point #1: metrics based on actual 
bugs found tend to be consistent with each 
other (read: useful for comparison)

• Take-home point #2: metrics based on bug-
triggering inputs look completely random 
(read: useless for comparison)

Take-home point #3: SMT solvers are broken (24 bugs 
found; each solver had correctness bugs, including Z3).

28



Outline

• Background

• Metrics used in the literature

• An automated approach

• How metrics compare

• Conclusion



Conclusion

• Bug-based metrics are useful for comparison, 
and our automated evaluation technique 
makes these much easier to gather

• Our evaluation shows that metrics based on 
bug-inducing inputs are meaningless

• Concerning, considering that most 
existing work uses these metrics

• SMT solvers tested are now a little less buggy 
(22 bugs fixed across all solvers tested)

29


