
Targeted Automated
Testing Using Constraint

Logic Programming
Kyle Dewey

Advisor: Ben Hardekopf

Targeted Automated
Testing Using Constraint

Logic Programming

Testing

Goal is to test some piece of software in the
hopes of finding bugs before users do

1

Targeted Automated
Testing Using Constraint

Logic Programming

Automated

No user intervention necessary once we
start running things

1

Targeted Automated
Testing Using Constraint

Logic Programming

Targeted

Not completely random; trying to create
specific inputs which act as good tests

1

Targeted Automated
Testing Using Constraint

Logic Programming

Constraint Logic Programming

99% Prolog, plus some other nice features

1

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Automated Testing
Motivation

• Writing correct software is hard

• Writing tests is time-consuming

• CPU cycles are cheap

2

Background: Differential
Testing

• Idea: generate an input via some process

• Run input on different implementations

• If implementations disagree on result, bug
has been found

3

Input
Generator

4

Input
Generator

Generates

function foo() { ... }
...
bar();

Test Input

4

Input
Generator

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

4

Input
Generator

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

4

Input
Generator

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

Mismatch: bug
4

Input
Generator

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

My research

4

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

function foo() { ... }
...
bar();

Consider the JavaScript snippet from before

5

function foo() { qw }
asdf
bar();

Any random input for “...” forms a possible test

5

function foo() { qw }
asdf
bar();

Any random input for “...” forms a possible test

...but there is no telling if this will be a good test

5

function foo() { qw }
asdf
bar();

Any random input for “...” forms a possible test

...but there is no telling if this will be a good test

(In this case, at best a test of variable lookup)

5

More complex example: a library that manipulates red-
black trees

6

More complex example: a library that manipulates red-
black trees

6

More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

6

More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

Hard problem!
6

More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

Still too trivial!
6

Too trivial?
• Arbitrary red-black trees aren’t bad tests,

but they aren’t good tests, either

• More interesting: valid red-black trees of
depth ≤ D, containing values between 0
and K, which will rebalance on the
insertion of value V

7

Too trivial?
• Arbitrary red-black trees aren’t bad tests,

but they aren’t good tests, either

• More interesting: valid red-black trees of
depth ≤ D, containing values between 0
and K, which will rebalance on the
insertion of value V

• Tests are much more specific

• Targeted tests for finding bugs in
insertion and rebalancing

• Significantly more difficult

• Unique to my work
7

Key Insights (1)
• Valid test inputs can be described as

solutions to systems of logical constraints

8

Key Insights (1)
• Valid test inputs can be described as

solutions to systems of logical constraints

3

X X

3

4 4

X X X X
8

Key Insights (1)
• Valid test inputs can be described as

solutions to systems of logical constraints

3

X X

3

4 4

X X X X

!isBST

8

Key Insights (2)
• A variety of search strategies can be used

to explore the space of solutions to these
logical constraints

9

Key Insights (2)
• A variety of search strategies can be used

to explore the space of solutions to these
logical constraints

• Search strategies can be
independent of constraints

• Search strategies are useful because
there tend to be many, even infinitely
many, solutions

• E.g., depth-first search, random, etc.
9

Enter Constraint Logic
Programming

• Constraint Logic Programming (CLP) is
Prolog integrated with arithmetic
constraint solvers

• CLP overall is viewable as a solver of logical
constraints, with fine-grained control over
how the constraints are solved

• Therefore, we can specify test input
constraints in CLP, and use existing CLP
engines to generate corresponding inputs

10

Digression: Why CLP?
• Why not SMT solvers?

•x > y ∧ y < z

• Not designed for getting all solutions,
only one solution; getting all ranges
from practically to actually impossible

• Slow (testing faster than generation)

• No / minimal control over search

11

Digression: Why CLP?
• Why not a custom constraint solver?

• Lots of engineering needed to make it fast,
which is unrelated to the test generation
problem

• Very easy to accidentally reimplement CLP

12

Digression: Why CLP?
• Why not a custom constraint solver?

• Lots of engineering needed to make it fast,
which is unrelated to the test generation
problem

• Very easy to accidentally reimplement CLP

• Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated testing based on java
predicates. In Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, ISSTA ’02, pages 123–133, New York, NY, USA, 2002. ACM.

• Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. Test
generation through programming in udita. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 225–234, New York, NY, USA, 2010. ACM.

• Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2015, pages 619–630, New York, NY, USA, 2015. ACM.

• Burke Fetscher, Koen Claessen, Michal Palka, John Hughes, and Robert Bruce Findler. Making random
judgements: Automatically generating well-typed terms from the definition of a type-system. ESOP 2015. 12

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Clause - comparable to function definition

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Clause head - comparable to function signature

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Clause body - comparable to function body

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Reverse implication
()

13

⇐

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Conjunction
(∧)

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

Arithmetic ≤ over symbolic variables

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(E, Min, Max) :-
 Min #=< E,
 E #=< Max.

End of clause

13

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

Logical meaning:

13

∀Min. ∀Elem. ∀Max .

inBounds(Elem,Min,Max) ⇐

Min ≤ Elem ∧ Elem ≤ Max

CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,
Min ≤ E ≤ Max

14

CLP Example: Binary Trees

14

CLP Example: Binary Trees
inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

14

CLP Example: Binary Trees
inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).

14

CLP Example: Binary Trees
inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).

14

CLP Example: Binary Trees
inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).

14

CLP Example: Binary Trees

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).
tree(node(Left, Elem, Right),
 Min, Max) :-
 inBounds(Elem, Min, Max),
 tree(Left, Min, Max),
 tree(Right, Min, Max).

14

CLP Example: Binary Trees

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).
tree(node(Left, Elem, Right),
 Min, Max) :-
 inBounds(Elem, Min, Max),
 tree(Left, Min, Max),
 tree(Right, Min, Max).

14

CLP Example: Binary Trees

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).
tree(node(Left, Elem, Right),
 Min, Max) :-
 inBounds(Elem, Min, Max),
 tree(Left, Min, Max),
 tree(Right, Min, Max).

14

CLP Example: Binary Trees

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).
tree(node(Left, Elem, Right),
 Min, Max) :-
 inBounds(Elem, Min, Max),
 tree(Left, Min, Max),
 tree(Right, Min, Max).

14

CLP Example: Binary Trees

inBounds(Elem, Min, Max) :-
 Min #=< Elem,
 Elem #=< Max.

tree(leaf(Elem), Min, Max) :-
 inBounds(Elem, Min, Max).
tree(node(Left, Elem, Right),
 Min, Max) :-
 inBounds(Elem, Min, Max),
 tree(Left, Min, Max),
 tree(Right, Min, Max).

14

CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3),
 writeln(Tree),
 fail.

15

CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3),
 writeln(Tree),
 fail.

Query

15

CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3),
 writeln(Tree),
 fail.

Generate a tree with Min = 0
and Max = 3; bind it to Tree

15

CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3),
 writeln(Tree),
 fail.

Write out the tree

15

CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3),
 writeln(Tree),
 fail.

Trigger backtracking to occur to
generate another tree.

Intuitively, Tree is nondeterministically bound to all
possible trees.

15

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Data Structure (DS)
Generation

• Applied CLP to the generation of complex
data structures, along with particular
variants of interest for testing

• Variants form a strict subset of the
space, and each DS had its own variant

• Most of the data structures were novel to
our work, along with all of the variants

• Intentionally wanted to push the limit
16

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

Covered in related work

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

Novel to our work

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees

17

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

Requires reasoning about both
rebalancing and insertion;

intuitively large state space

18

Example Variant (Same as
Previously Described)
• Valid red-black trees of depth ≤ D,

containing values between 0 and K, which
will rebalance on the insertion of
value V

isBST(Tree1) ∧
isRedBlackTree(Tree1) ∧
callsRebalance(
 insert(Tree1, V, Tree2))

Naive approach: generate all
possible trees, and filter those
that are related via insert

18

Evaluation

• Tested all aforementioned data structures
and their special variants on Korat, UDITA,
and CLP (using GNU Prolog)

• Measured how quickly all data
structures within certain bounds (small,
medium, large) could be generated, with a
30 minute timeout

• Quicker generation means more time
testing and less time generating

19

Small Bounds

0.00100

450.00075

900.00050

1350.00025

1800.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat UDITA CLP

Seconds
(lower is
better)

20

Small Bounds

0.00100

450.00075

900.00050

1350.00025

1800.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat UDITA CLP

Seconds
(lower is
better)

UDITA Is Extremely Slow

20

Small Bounds

0.00100

35.00075

70.00050

105.00025

140.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat CLP

Seconds
(lower is
better)

20

Small Bounds

0.00100

35.00075

70.00050

105.00025

140.00000

Lists Red-Black Heaps Image Skip Splay B-Trees

Korat CLP

CLP Barely Registers

Seconds
(lower is
better)

20

Medium Bounds

• UDITA times out on everything

• Korat times out on 5 / 14 experiments

• CLP is generally ~30× - 1,000x faster

• For B-trees, Korat and UDITA both
timeout, but CLP completes within a
single millisecond, ultimately thanks to
the capability to control search

• Internally, they took the naive strategy
21

Large Bounds

• Korat and UDITA timeout on everything

• Depending on the data structure, CLP takes
between ~70 seconds and just under 30
minutes

22

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

• Bulk of existing literature is focused on
stochastic grammars

• Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Example Derivation

e

e1 + e2

e3 + e4 3

1 3 24

Example Derivation

e

e1 + e2

e3 + e4 3

1 3 24

Problems with
Stochastic Grammars
• All you get is syntactic validity

• No idea what programs do

• Programs are not generally well-typed

• Difficult to test particular components
(e.g., specifically code generation)

• Only configuration is by tuning
probabilities

25

Enter CLP

• Generating syntactically valid programs is
easy...

26

Syntactic Validity

27

Syntactic Validity

27

Syntactic Validity

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Syntactic Validity

arithExp(add(E1, E2)) :-
 arithExp(E1),
 arithExp(E2).

arithExp(num(N)) :-
 INTMIN #=< N,
 N #=< INTMAX.

27

Beyond Syntax

• For example, programs which evaluate to a
particular value

• A semantic property

• Involves writing an evaluator for the
language in CLP

28

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Expressions that
Evaluate to 7

eval(num(N), N).
eval(add(E1, E2), N) :-
 eval(E1, N1),
 eval(E2, N2),
 N #= N1 + N2.

% same arithExp from before
evalsTo7(E) :-
 arithExp(E),
 eval(E, 7).

29

Scaling Up

• This central idea was applied to generating
JavaScript programs with known runtime
behaviors

• Compared the generation rate to that of a
finely-tuned stochastic grammar designed
for the same thing

• Stochastic grammar probabilities were
tuned to try to generate programs with
certain behaviors

30

Scaling Up

• For JavaScript, generate programs which:

• avoid dereferencing null: CLP ~3.8x faster

• stress integer optimizations: CLP ~7.8x faster

• utilize with and higher-order functions in
problematic ways: CLP ~3.1 million x faster

• utilize prototype-based inheritance: CLP
infinitely faster (stochastic grammars never
generated such a program within the five-
minute timeframe)

30

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Why Rust?
• A real language with a rapidly growing user

base (over 6,600 packages available currently)

• A sophisticated type system with important
guarantees (e.g., memory safety without GC)

• No formal semantics, or even an informal
specification

• Worked closely with Rust development
team

31

Why Rust’s
Typechecker?

• Well-typed Rust programs are memory safe

• If the typechecker fails to flag an ill-typed
program, then there is a silent loss of
memory safety guarantees

• Most complex language component at the
time

32

Unique Challenge: There
is Only One Rust

33

Input
Generator

Generates

Test Input
function foo() { ... }
...
bar();

Executed on

42 42 53
Produce

33

Input
Generator

Generates

Test Input
fn foo() { ... }
fn bar() { ... }
fn main() { ... }

Executed on

well-typed
33

Input
Generator

Generates

Test Input
fn foo() { ... }
fn bar() { ... }
fn main() { ... }

Executed on

well-typed

Nothing to compare to!

33

Solution

• Generate tests which behave predictably
ahead of time, and check that the
underlying system agrees with the
predication

• In other words, generate tests which we
know to be well-typed or ill-typed, and
make sure Rust agrees

• Requires understanding Rust’s type system

34

Rust’s Type System

• Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables

35

Rust’s Type System

• Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables

Never before
generated

35

Rust’s Type System

• Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables Unavailable in
existing systems

35

Rust’s Type System

• Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables
Never attempted

before
35

Rust’s Type System

• Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables

Altogether, must embed a specialized constraint solver for
handing these features in CLP itself

35

Well-Typed for Testing

• For testing purposes, well-typed programs
are not particularly interesting

• If compiler rejects a well-typed
program, the programmer gets annoyed

• Types as analysis: rejection of a well-
typed program is a precision issue

36

Ill-Typed for Testing

• More interesting for testing purposes: ill-
typed programs

• If a compiler accepts an ill-typed
program, we get a silent loss of
guarantees

• For Rust, this means programs are not
necessarily memory-safe, defeating the
entire purpose of the language

• Types as analysis: accepting an ill-typed
program is a soundness issue

37

Generating Ill-Typed
Programs

• Naive approach: generate syntactically valid
programs and discard those that happen to be
well-typed

• Relatively efficient (most will be ill-typed)

• Most programs are obviously ill-typed
(multiple type errors; a typechecker need
only spot one, so this masks bugs)

38

Generating Ill-Typed
Programs

• Better approach: generate programs which
are almost well-typed

• Intuitively, negate a single premise in a
typing rule, leading to programs which are
ill-typed by construction, but only with
respect to the single negated premise

• Results in highly targeted tests

• This idea is novel, and this was the first
attempt to generate anything intentionally
ill-typed 39

Rust Testing Results

• Able to generate ~2,300 programs per
second

• Versus ~2 per second compared to
preexisting techniques on a simpler
language CLP is over 1,100x faster for a
significantly more complex language

• Found 18 issues; developers considered 14 of
these bugs

• Included one specification level bug
40

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

SMT Solvers

• Used for solving constraints specified in the
SMT-LIB language, in a similar vein as CLP

• Crucially important in software verification;
that is, proving some code does the right
thing

• Solvers can be buggy too

• Buggy solvers can mean faulty proofs

41

Testing Approach

• Lots of details

• Work is currently in submission

• Basic idea: test with well-typed SMT-LIB
formulas which are known to be logically
satisfiable or unsatisfiable ahead of time

42

Testing Results

• 24 bugs have been found across a number
of solvers

• Every solver tested had at least
one correctness bug, including Z3

• Included a specification bug which
required communication with the standards
committee

43

Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion

Conclusion

• CLP is applicable to a number of test
problems

• CLP is capable of generating very complex
tests in a high-performance fashion

• No need to write lots of test generation
code with CLP

44

Demo

