Targeted Automated
Testing Using Constraint
Logic Programming

Kyle Dewey
Advisor: Ben Hardekopf

pre2s
NI

o

Targeted Automated
Testing Using Constraint
Logic Programming

Testing

Goal is to test some piece of software in the
hopes of finding bugs before users do

Targeted Automated
Testing Using Constraint
Logic Programming

Automated

No user intervention necessary once we
start running things

largeted Automated
Testing Using Constraint
Logic Programming

Targeted

Not completely random; trying to create
specific inputs which act as good tests

Targeted Automated
Testing Using Constraint
Logic Programming

Constraint Logic Programming

99% Prolog, plus some other nice features

Qutline

Background
Research problem
Applications

® Data Structure Generation

® (Generating JavaScript Programs with
Known Runtime Behaviors

® Testing Rust’s Typechecker
® Testing SMT Solvers

Conclusion

Qutline

Background
Research problem
Applications

® Data Structure Generation

® Generating JavaScript Programs with
Known Runtime Behaviors

® Testing Rust’s Typechecker
® Testing SMT Solvers

Conclusion

Automated lesting
Motivation

® Writing correct software is hard
® Writing tests is time-consuming

® CPU cycles are cheap

Background: Differential
lesting

® |dea: generate an input via some process
® Run input on different implementations

® |f implementations disagree on result, bug
has been found

Input
Generator

Input

Generator

Generates

B GOk RO e
Test Input

bar ()

Input

Generator

Generates

N G @R O @)
Test Input

Executed on

Input

Generator

Generates

IS BEALCIE aL@)Ar IEEer)]

i Test Input
par () ;

Executed on

i

j Produce

53

Input

Generator

Generates

IS BEALCIE aL@)Ar IEEer)]

i Test Input
par () ;

Executed on

i

j Produce

Mismatch: bug@

Input

My research
Generator 4

N G @R O @)

i Test Input
par () ;

Executed on

i

j Produce

53

Qutline

Background
Research problem
Applications

® Data Structure Generation

® Generating JavaScript Programs with
Known Runtime Behaviors

® Testing Rust’s Typechecker
® Testing SMT Solvers

Conclusion

Consider the JavaScript snippet from before

B GOk RO e

]<.><’;1£();

Any random input for “...” forms a possible test

B GOk RO e

loie {5

Any random input for “...” forms a possible test

B GOk RO e

(/eI 5,

...but there is no telling if this will be a good test

Any random input for “...” forms a possible test

B GOk RO e

(/eI 5,

...but there is no telling if this will be a good test

(In this case, at best a test of variable lookup)

More complex example: a library that manipulates red-
black trees

More complex example: a library that manipulates red-
black trees

A

s

More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

Hard problem!

More complex example: a library that manipulates red-
black trees

13

17

/

22

NIL NIL

eed at least a significanwportion of tests
ich consist of valid red-black tsees

Still too trivial!

Intuitively,

Too trivial?

® Arbitrary red-black trees aren’t bad tests,
but they aren’t good tests, either

® More interesting: valid red-black trees of
depth £ D, containing values between 0

and K, which will rebalance on the
insertion of value v

Too trivial?

® Arbitrary red-black trees aren’t bad tests,
but they aren’t good tests, either

® More interesting: valid red-black trees of
depth £ D, containing values between 0

and K, which will rebalance on the
insertion of value v

® TJests are much more specific

® Targeted tests for finding bugs in
insertion and rebalancing

® Significantly more difficult

® Unique to my work

Key Insights (1)

® Valid test inputs can be described as
solutions to systems of logical constraints

Key Insights (1)

® Valid test inputs can be described as
solutions to systems of logical constraints

Key Insights (1)

® Valid test inputs can be described as
solutions to systems of logical constraints

3

. l 1isBST
2\

4 4
/ AN
X .

v

\NO
N\

X

Key Insights (2)

® A variety of search strategies can be used
to explore the space of solutions to these
logical constraints

Key Insights (2)

® A variety of search strategies can be used
to explore the space of solutions to these
logical constraints

® Search strategies can be
independent of constraints

® Search strategies are useful because
there tend to be many, even infinitely
many, solutions

® E.g,depth-first search, random, etc.

Enter Constraint Logic
Programming

® Constraint Logic Programming (CLP) is
Prolog integrated with arithmetic
constraint solvers

® CLP overall is viewable as a solver of logical
constraints, with fine-grained control over
how the constraints are solved

® Therefore, we can specify test input
constraints in CLP, and use existing CLP
engines to generate corresponding inputs

Digression:Why CLP?

® Why not SMT solvers!?
®x > v ANy < Z

® Not designed for getting all solutions,
only one solution; getting all ranges
from practically to actually impossible

® Slow (testing faster than generation)

® No / minimal control over search

23

Digression:Why CLP?

® Why not a custom constraint solver?

® | ots of engineering needed to make it fast,
which is unrelated to the test generation
problem

® Very easy to accidentally reimplement CLP

Digression: VWhy CLP!?

® Why not a custom constraint solver?

® | ots of engineering needed to make it fast,
which is unrelated to the test generation
problem

® Very easy to accidentally reimplement CLP

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated testing based on java
predicates. In Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, ISSTA ’02, pages 123—133, New York, NY, USA, 2002. ACM.

Milos Gligoric, Tihomir Gvero,Vilas Jagannath, Sarfraz Khurshid,Viktor Kuncak, and Darko Marinov.Test
generation through programming in udita. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume |, ICSE ’10, pages 225-234, New York, NY, USA, 2010. ACM.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2015, pages 619-630, New York, NY, USA, 2015. ACM.

Burke Fetscher, Koen Claessen, Michal Palka, John Hughes, and Robert Bruce Findler. Making random
judgements: Automatically generating well-typed terms from the definition of a type-system. ESOP 2015.

CLP Example: Binary

Trees

® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

1

® Constraint: for each element value E

Min £ E < Max

—y

CLP Example: Binary

Trees

® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

L

® Constraint: for each element value E

Min & E < Max

—l 9

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < E < Max

1nBounds (E, Min, Max) :-
Min #=< E,

E #=< Max.

[~

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

Clause - comparable to function definition

1nBounds (E, Min, Max) :-
Min #=< E,

E #=< Max.

[~

CLP Example: Binary Trees

® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,

Min < E

< Max

Clause head - comparable to function signature

1

1nBounds (E

]

Min, Max)| :-

Min #=<

= [~

4

E #=< Max.

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min #=< E,

E #=< Max.

=)~

Clause body - comparable to function body

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) |:-
Min #=< E,

E #=< Max.

[~

Reverse implication

(<)

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min #=< Ej

E #=< Max.

[~

Conjunction

(A)

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min |[#=<| E,

E [#=<| Max.

[~

Arithmetic < over symbolic variables

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min #=< E,

E #=< Max|.

[~

End of clause

CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

T1

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

Logical meaning:
VMin.VElem.VMazx.

inBounds(Elem, Min, Mazx) <=
Min < Elem N Elem < Max

CLP Example: Binary

Trees

® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

L

® Constraint: for each element value E

Min £ E < Max

—y

- CLP Example: Binary Trees

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

CLP Example: Binary Trees

i1nBounds (Elem, Main,
Min #=< Elem,

tree(leaf (Elem),

Elem #=< Max.

1nBounds (.

F 1l em,

M1in,

Max)

M1in,

Max)

Max) .

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max)| :-
i1nBounds (Elem, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).
tree (node (Left, Elem, Right),
Min, Max) :-
i1nBounds (Elem, Min, Max),
tree(Left, Min, Max),
tree (R1ght, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right)|,
Min, Max) :-
i1nBounds (Elem, Min, Max),
tree(Left, Min, Max),
tree (R1ght, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max).

CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max)|.

CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
writeln (Tree),
fail.

CLP Example: Binary Trees

® Generating valid trees can be done like so:

?—| tree (Tree, 0, 3),
writeln (Tree),
fail.

Query

CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— |[tree (Tree, 0, 3),
writeln (Tree),
fail.

Generate a tree with Min = O
and Max = 3;binditto Tree

CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
writeln (Tree),
fail.

Write out the tree

CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
wrliteln (Tree),
fail.

Trigger backtracking to occur to
generate another tree.

Intuitively, Tree is nondeterministically bound to all
possible trees.

Qutline

® Applications

® Data Structure Generation

Data Structure (DS)
Generation

® Applied CLP to the generation of complex
data structures, along with particular
variants of interest for testing

® Variants form a strict subset of the
space, and each DS had its own variant

® Most of the data structures were novel to
our work, along with all of the variants

® |ntentionally wanted to push the limit

Data Structures

Sorted linked lists

Red-black trees

Array-based heaps (priority queues)
ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array-based heaps (priority queues)
ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array-based heaps (priority queues)
ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array-based heaps (priority queues)

ANI images (via grammars)
Skip lists
Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees Covered in related work
Array-based heaps (priority queues)

ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees
Array-based heaps (priority queues)
ANI images (via grammars)
Skip lists
Novel to our work

Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees

Array-based heaps (priority queues)

ANI images (via grammars)

Skip lists
Splay trees

B-trees

Data Structures

Sorted linked lists
Red-black trees
Array-based heaps (priority queues)

ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

Sorted linked lists

Red-black trees

Array-based heaps (priority queues)
ANI images (via grammars)

Skip lists

Splay trees

B-trees

Data Structures

® Sorted linked lists

® Red-black trees

® Array-based heaps (priority queues)
® ANI images (via grammars)

® Skip lists

® Splay trees

® B-trees

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) |A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel)| A

callsRebalance (
insert (Treel, V, Tree?))

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of

value Vv . .
Requires reasoning about both

rebalancing and insertion;
1sBST (Treel) A jntuitively large state space
1sRedBRlackTree (Treel) A
callsRebalance (
insert (Treel, V, Tree2))

Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which
will rebalance on the insertion of

value Vv

1sBST (Treel)

1sRedBlackTree (Treel) A

callsRebalance (

1nsert (

Treel

4

\&

Tree?

Naive approach: generate all
possible trees, and filter those
A that are related via insert

Evaluation

® TJested all aforementioned data structures

and their special variants on Korat, UDITA,
and CLP (using GNU Prolog)

® Measured how quickly all data
structures within certain bounds (small,

medium, large) could be generated, with a
30 minute timeout

® Quicker generation means more time
testing and less time generating

seconds Small Bounds

(lower is
better)

1800.00000

1350.00025
900.00050
450.00075 | |
0.00100 II -I I I 1 i I

Lists Red-Black Heaps Image Skip Splay B-Trees

B Korat [UDITA CLP

20

seconds Small Bounds

(lower is
better)

1800.00000

B Korat | UDITA CLP

UDITA |Is Extremely Slow

Lists Red-Black Heaps Image Skip Splay

1350.00025
900.00050
450.00075 |
0.00100 II -I I I 1 i I

B-Trees

20

Seconds

(lower is Small Bounds

bettel‘) B Korat W CLP

140.00000
105.00025

70.00050

35.00075 I I ‘ |
0.00100 I H__ = = -

Lists Red-Black Heaps Image Skip Splay B-Trees

Seconds
(lower is
better)

140.00000

105.00025

70.00050

35.00075

Small Bounds

B Korat

CLP Barely Registers

M CLP

0.00100
Lists

Red-Black

Heaps

Image

Skip

Splay

B-Trees

20

Medium Bounds

UDITA times out on everything
Korat times out on 5/ 14 experiments
CLP is generally ~30x - |,000x faster

For B-trees, Korat and UDITA both
timeout, but CLP completes within a

single millisecond, ultimately thanks to
the capability to control search

® |nternally, they took the naive strategy

21

Large Bounds

® Korat and UDITA timeout on everything

® Depending on the data structure, CLP takes
between ~/0 seconds and just under 30
minutes

22

Qutline

® Applications

® (Generating JavaScript Programs with
Known Runtime Behaviors

Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

23

Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e & A’I"ithEﬁEp =n €N ‘ €1 + €9

23

Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e € ArithExzp|::=n €N | e; + e

23

Generating Programs

® Bulk of existing literature is focused on

stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e € ArithExp ::=

n € N

| e1 + e

23

Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e & A’I"ithE:L‘p =n €N ‘ €1 + €9

23

Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e € ArithExp == n € N\ e1 + e2

23

Example Derivation

0.4

e € ArithExzp :=n € NOG\ e1 + e

)
/N
e3 T €4 3
/N

Example Derivation

e € ArithExp ::=

n €N

0.6

| e1+ e

24

Problems with
Stochastic Grammars

® All you get is syntactic validity
® No idea what programs do
® Programs are not generally well-typed

® Difficult to test particular components
(e.g., specifically code generation)

® Only configuration is by tuning
probabilities

25

Enter CLP

® Generating syntactically valid programs is
easy...

26

Syntactic Validity

e € ArithEzp :=n €N | e1 + e

27

Syntactic Validity

e € ArithEzp ::=

n €N

| e1+ e

27

Syntactic Validity

e € ArithEzp ::=

n €N

| e1+ e

arithExp (num (N))

INTMIN #=<

N,

N #=< INTMAX.

Syntactic Validity

e € ArithExp :=n € N

| e1+ e

arithl

LXP (num (N))

INTMIN #=< N,
N #=< INTMAX.

27

Syntactic Validity

e € ArithExp :=n € N

| e1+ e

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

27

Syntactic Validity

e € ArithExp :=n € N

| e1+ e

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

27

Syntactic Validity

e € ArithExp :=n € N |

€1 + €2

arithExp (num(N)) :-
INTMIN #=< N,
N #=< INTMAX.

Syntactic Validity

e € ArithExzp :=n €N |

€1 + €2

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,

arithl

X (!

arithl

w 1),

X (!

2) .

27

Syntactic Validity

e € ArithExp :=n € N |

€1 + €2

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1, |

arithl

X (!

arithl

w 1),

X (!

2) .

27

Syntactic Validity

e € ArithExp :=n € N |

€1 + €2

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,

arithl

X (!

w 1),

arithl

X (!

2) .

27

Syntactic Validity

e € ArithExp :=n € N |

€1 + €2

arithExp (num (N))
INTMIN #=< N,
N #=< INTMAX.

arithExp (add (E1,

arithl

X (!

w 1),

arithl

X (!

2) .

27

Beyond Syntax

® For example, programs which evaluate to a
particular value

® A semantic property

® |nvolves writing an evaluator for the
language in CLP

28

Expressions that
Evaluate to /

eval (num(N), N).

eval (add (]

1, EZ2), N) :-

eval (E1, N1),
eval (E2, N2),

N #= N1

)

+ NZ.

% same arithExp from before

evalsTo/ (]

ar1thExp

eval (E,

n ° —
- e

E)
)

29

Expressions that
Evaluate to /

eval (num(N), N).

eval (add (]

1, EZ2), N) :-

eval (E1, N1),
eval (E2, N2),

N #= N1

)

+ NZ.

% same arithExp from before

evalsTo/ (]

ar1thExp

eval (E,

n ° —
- e

E)
)

29

Expressions that
Evaluate to /

eval (num(N), N).

eval (add (]

1, EZ2), N)| :-

eval (E1, N1),
eval (E2, N2),

N #= N1

)

+ NZ.

% same arithExp from before

evalsTo/ (]

ar1thExp

eval (E,

n ° —
- e

E)
)

29

Exp

ressions that

Evaluate to /

eval (num(N), N).
eval (add (E1, EZ2), N) :-

eval (]

1, N1),

eval (]

2, N2),

N #= N1 + N2.

)

% same arithExp from before

evalsTo/ (E) :-

arithkF

eval (E

E)
)

29

Exp

ressions that

Evaluate to /

eval (num(N), N).
eval (add (E1, EZ2), N) :-

eval (]

1, N1),

eval (]

2, N2),

N #= N1 + N2.

)

% same arithExp from before

evalsTo/ (E) :-

arithkF

eval (E

E)
)

29

Expressions that
Evaluate to /

eval (num(N), N).

eval (add (]

1, EZ2), N) :-

eval (E1, N1),
eval (E2, N2),

N #= NI

+ NZ.

)

% same arithExp from before

evalsTo/ (]

ar1thExp

eval (E,

n ° —
- e

E)
)

29

Expressions that
Evaluate to /

eval (num(N), N).

eval (add (]

1, EZ2), N) :-

eval (E1, N1),
eval (E2, N2),

N #= N1

)

+ NZ.

% same arithExp from before

evalsTo/ (]

n ° —
- e

ar1thExp

eval (E,

E)
)

29

Expressions that
Evaluate to /

eval (num (N) ,

eval (add (]

eval (E1,
eval (E2,

f 1,

N1),
N2),

N #= N1 + N2.

)

$ same arilithl

evalsTo/ (]

L Xp from before

ar1thExp

E),

eval (E,

)

29

Expressions that
Evaluate to /

eval (num (N) ,

eval (add (]

eval (E1,
eval (E2,

f 1,

N1),
N2),

N #= N1 + N2.

)

$ same arilithl

evalsTo/ (]

ar1thExp

L Xp from before

E),

eval (E,

)

29

Scaling Up

® This central idea was applied to generating
JavaScript programs with known runtime

behaviors

® Compared the generation rate to that of a
finely-tuned stochastic grammar designed
for the same thing

® Stochastic grammar probabilities were
tuned to try to generate programs with
certain behaviors

30

Scaling Up

® For JavaScript, generate programs which:

® avoid dereferencing null: CLP ~3.8X faster

® stress integer optimizations: CLP ~7.8X faster

e utilize with and higher-order functions in
problematic ways: CLP ~3.1 million X faster

® utilize prototype-based inheritance: CLP
infinitely faster (stochastic grammars never

generated such a program within the five-

minute timeframe) N

Qutline

® Applications

® Testing Rust’s Typechecker

Why Rust?

® A real language with a rapidly growing user
base (over 6,600 packages available currently)

® A sophisticated type system with important
guarantees (e.g., memory safety without GC)

® No formal semantics, or even an informal
specification

® Worked closely with Rust development
team

31

Why Rust’s
Typechecker?

® Well-typed Rust programs are memory safe

® |f the typechecker fails to flag an ill-typed
program, then there is a silent loss of
memory safety guarantees

® Most complex language component at the
time

32

Unique Challenge: There
is Only One Rust

Input

Generator

Generates

IS BEALCIE aL@)Ar IEEer)]

i Test Input
par () ;

Executed on

i

j Produce

53

33

Input

Generator

Generates

Test Input

Executed on

well-typed

33

Input

Generator

Generates

Test Input

Executed on

| Nothing to compare to!

well-typed

33

Solution

® Generate tests which behave predictably
ahead of time, and check that the
underlying system agrees with the
predication

® |nh other words, generate tests which we
know to be well-typed or ill-typed, and
make sure Rust agrees

® Requires understanding Rust’s type system

34

Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables

35

Rust’s Type System

Never before

® Rust has typeclasses, parametric generated
polymorphism, generics, and|affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables

Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:

® Symbolic arithmetic constraints

e Constraints on type variables Unavailable in
existing systems

35

Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:

® Symbolic arithmetic constraints

® (Constraints on type variables

Never attempted
before

35

Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables

Altogether, must embed a specialized constraint solver for
handing these features in CLP itself

35

Well-Typed for Testing

® For testing purposes, well-typed programs
are not particularly interesting

® |f compiler rejects a well-typed
program, the programmer gets annoyed

® Types as analysis: rejection of a well-
typed program is a precision issue

36

lll-Typed for Testing

® More interesting for testing purposes:ill-
typed programs

® |f a compiler accepts an ill-typed
program, we get a silent loss of
guarantees

® For Rust, this means programs are not
necessarily memory-safe, defeating the
entire purpose of the language

® Jypes as analysis: accepting an ill-typed
program is a soundness issue

37

Generating lllI-Typed
Programs

® Naive approach: generate syntactically valid
programs and discard those that happen to be

well-typed
® Relatively efficient (most will be ill-typed)

® Most programs are obviously ill-typed
(multiple type errors; a typechecker need
only spot one, so this masks bugs)

38

Generating lllI-Typed
Programs

® Better approach: generate programs which
are almost well-typed

® |ntuitively, negate a single premise in a
typing rule, leading to programs which are
ill-typed by construction, but only with
respect to the single negated premise

® Results in highly targeted tests

® This idea is novel, and this was the first
attempt to generate anything intentionally
ill-typed

39

Rust lTesting Results

® Able to generate ~2,300 programs per
second

® Versus ~2 per second compared to
preexisting techniques on a simpler
language CLP is over |,100x faster for a
significantly more complex language

® Found |8 issues; developers considered |4 of
these bugs

® |[ncluded one specification level bug

40

Qutline

® Applications

® Testing SMT Solvers

SMT Solvers

Used for solving constraints specified in the
SMT-LIB language, in a similar vein as CLP

Crucially important in software verification;
that is, proving some code does the right
thing

Solvers can be buggy too

Buggy solvers can mean faulty proofs

4]

Testing Approach

® | ots of details
® Work is currently in submission

® Basic idea: test with well-typed SMT-LIB
formulas which are known to be logically
satisfiable or unsatisfiable ahead of time

42

Testing Results

® 24 bugs have been found across a number
of solvers

® Every solver tested had at least
one correctness bug, including Z3

® |ncluded a specification bug which
required communication with the standards
committee

43

Qutline

Background
Research problem
Applications

® Data Structure Generation

® Generating JavaScript Programs with
Known Runtime Behaviors

® Testing Rust’s Typechecker
® Testing SMT Solvers

Conclusion

Conclusion

® CLP is applicable to a number of test
problems

® CLP is capable of generating very complex
tests in a high-performance fashion

® No need to write lots of test generation
code with CLP

44

Demo

