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Testing

Goal is to test some piece of software in the
hopes of finding bugs before users do
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Automated

No user intervention necessary once we
start running things
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Targeted Automated 
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Targeted

Not completely random; trying to create
specific inputs which act as good tests
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Constraint Logic Programming

99% Prolog, plus some other nice features
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Automated Testing 
Motivation

• Writing correct software is hard

• Writing tests is time-consuming

• CPU cycles are cheap
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Background: Differential 
Testing

• Idea: generate an input via some process

• Run input on different implementations

• If implementations disagree on result, bug 
has been found
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Input 
Generator
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function foo() { ... } 
... 
bar();

Test Input
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Produce

My research
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function foo() { ... } 
... 
bar();

Consider the JavaScript snippet from before
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function foo() { qw } 
asdf 
bar();

Any random input for “...” forms a possible test

5



function foo() { qw } 
asdf 
bar();

Any random input for “...” forms a possible test

...but there is no telling if this will be a good test

5



function foo() { qw } 
asdf 
bar();

Any random input for “...” forms a possible test

...but there is no telling if this will be a good test

(In this case, at best a test of variable lookup)
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More complex example: a library that manipulates red-
black trees
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More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests 
which consist of valid red-black trees

Hard problem!
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More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests 
which consist of valid red-black trees

Still too trivial!
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Too trivial?
• Arbitrary red-black trees aren’t bad tests, 

but they aren’t good tests, either

• More interesting: valid red-black trees of 
depth ≤ D, containing values between 0 
and K, which will rebalance on the 
insertion of value V
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Too trivial?
• Arbitrary red-black trees aren’t bad tests, 

but they aren’t good tests, either

• More interesting: valid red-black trees of 
depth ≤ D, containing values between 0 
and K, which will rebalance on the 
insertion of value V

• Tests are much more specific

• Targeted tests for finding bugs in 
insertion and rebalancing

• Significantly more difficult

• Unique to my work
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Key Insights (1)
• Valid test inputs can be described as 

solutions to systems of logical constraints
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!isBST
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Key Insights (2)
• A variety of search strategies can be used 

to explore the space of solutions to these 
logical constraints
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Key Insights (2)
• A variety of search strategies can be used 

to explore the space of solutions to these 
logical constraints

• Search strategies can be 
independent of constraints

• Search strategies are useful because 
there tend to be many, even infinitely 
many, solutions

• E.g., depth-first search, random, etc.
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Enter Constraint Logic 
Programming

• Constraint Logic Programming (CLP) is 
Prolog integrated with arithmetic 
constraint solvers

• CLP overall is viewable as a solver of logical 
constraints, with fine-grained control over 
how the constraints are solved

• Therefore, we can specify test input 
constraints in CLP, and use existing CLP 
engines to generate corresponding inputs
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Digression: Why CLP?
• Why not SMT solvers?

•x > y ∧ y < z 

• Not designed for getting all solutions, 
only one solution; getting all ranges 
from practically to actually impossible

• Slow (testing faster than generation)

• No / minimal control over search
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Digression: Why CLP?
• Why not a custom constraint solver?

• Lots of engineering needed to make it fast, 
which is unrelated to the test generation 
problem

• Very easy to accidentally reimplement CLP
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Digression: Why CLP?
• Why not a custom constraint solver?

• Lots of engineering needed to make it fast, 
which is unrelated to the test generation 
problem

• Very easy to accidentally reimplement CLP
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CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,    
Min ≤ E ≤ Max
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CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,    
Min ≤ E ≤ Max

inBounds(E, Min, Max) :- 
  Min #=< E, 
  E #=< Max. 

Arithmetic ≤ over symbolic variables
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CLP Example: Binary Trees
• Binary trees, not binary search trees

• Consist of leaves and internal nodes

• Both are associated with one value

• Constraint: for each element value E,    
Min ≤ E ≤ Max

inBounds(Elem, Min, Max) :- 
  Min #=< Elem, 
  Elem #=< Max. 

Logical meaning:

13

∀Min. ∀Elem. ∀Max .

inBounds(Elem,Min,Max ) ⇐

Min ≤ Elem ∧ Elem ≤ Max
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CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3), 
   writeln(Tree), 
   fail.
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CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3), 
   writeln(Tree), 
   fail.

Generate a tree with Min = 0
and Max = 3; bind it to Tree
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CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3), 
   writeln(Tree), 
   fail.

Write out the tree

15



CLP Example: Binary Trees

• Generating valid trees can be done like so:

?- tree(Tree, 0, 3), 
   writeln(Tree), 
   fail.

Trigger backtracking to occur to
generate another tree.

Intuitively, Tree is nondeterministically bound to all 
possible trees.
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Data Structure (DS) 
Generation

• Applied CLP to the generation of complex 
data structures, along with particular 
variants of interest for testing

• Variants form a strict subset of the 
space, and each DS had its own variant

• Most of the data structures were novel to 
our work, along with all of the variants

• Intentionally wanted to push the limit
16



Data Structures
• Sorted linked lists

• Red-black trees

• Array-based heaps (priority queues)

• ANI images (via grammars)

• Skip lists

• Splay trees

• B-trees
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Covered in related work
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Example Variant (Same as 
Previously Described)
• Valid red-black trees of depth ≤ D, 

containing values between 0 and K, which 
will rebalance on the insertion of 
value V
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Example Variant (Same as 
Previously Described)
• Valid red-black trees of depth ≤ D, 

containing values between 0 and K, which 
will rebalance on the insertion of 
value V

isBST(Tree1) ∧ 
isRedBlackTree(Tree1) ∧ 
callsRebalance( 
  insert(Tree1, V, Tree2))

Requires reasoning about both
rebalancing and insertion; 

intuitively large state space
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Example Variant (Same as 
Previously Described)
• Valid red-black trees of depth ≤ D, 

containing values between 0 and K, which 
will rebalance on the insertion of 
value V

isBST(Tree1) ∧ 
isRedBlackTree(Tree1) ∧ 
callsRebalance( 
  insert(Tree1, V, Tree2))

Naive approach: generate all 
possible trees, and filter those 
that are related via insert

18



Evaluation

• Tested all aforementioned data structures 
and their special variants on Korat, UDITA, 
and CLP (using GNU Prolog)

• Measured how quickly all data 
structures within certain bounds (small, 
medium, large) could be generated, with a 
30 minute timeout

• Quicker generation means more time 
testing and less time generating

19
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Small Bounds
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CLP Barely Registers
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better)
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Medium Bounds

• UDITA times out on everything

• Korat times out on 5 / 14 experiments

• CLP is generally ~30× - 1,000x faster

• For B-trees, Korat and UDITA both 
timeout, but CLP completes within a 
single millisecond, ultimately thanks to 
the capability to control search

• Internally, they took the naive strategy
21



Large Bounds

• Korat and UDITA timeout on everything

• Depending on the data structure, CLP takes 
between ~70 seconds and just under 30 
minutes

22
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Generating Programs

• Bulk of existing literature is focused on 
stochastic grammars

• Randomly walk over a language’s 
grammar, producing syntactically valid 
programs as a result
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Problems with 
Stochastic Grammars
• All you get is syntactic validity

• No idea what programs do

• Programs are not generally well-typed

• Difficult to test particular components 
(e.g., specifically code generation)

• Only configuration is by tuning 
probabilities

25



Enter CLP

• Generating syntactically valid programs is 
easy...

26
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Beyond Syntax

• For example, programs which evaluate to a 
particular value

• A semantic property

• Involves writing an evaluator for the 
language in CLP

28



Expressions that 
Evaluate to 7

eval(num(N), N). 
eval(add(E1, E2), N) :- 
  eval(E1, N1), 
  eval(E2, N2), 
  N #= N1 + N2. 

% same arithExp from before 
evalsTo7(E) :- 
  arithExp(E), 
  eval(E, 7).
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Scaling Up

• This central idea was applied to generating 
JavaScript programs with known runtime 
behaviors

• Compared the generation rate to that of a 
finely-tuned stochastic grammar designed 
for the same thing

• Stochastic grammar probabilities were 
tuned to try to generate programs with 
certain behaviors
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Scaling Up

• For JavaScript, generate programs which:

• avoid dereferencing null: CLP ~3.8x faster

• stress integer optimizations: CLP ~7.8x faster

• utilize with and higher-order functions in 
problematic ways: CLP ~3.1 million x faster

• utilize prototype-based inheritance: CLP 
infinitely faster (stochastic grammars never 
generated such a program within the five-
minute timeframe)
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Why Rust?
• A real language with a rapidly growing user 

base (over 6,600 packages available currently)

• A sophisticated type system with important 
guarantees (e.g., memory safety without GC)

• No formal semantics, or even an informal 
specification

• Worked closely with Rust development 
team
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Why Rust’s 
Typechecker?

• Well-typed Rust programs are memory safe

• If the typechecker fails to flag an ill-typed 
program, then there is a silent loss of 
memory safety guarantees

• Most complex language component at the 
time
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Unique Challenge: There 
is Only One Rust
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Input 
Generator

Generates

Test Input
function foo() { ... } 
... 
bar();

Executed on

42 42 53
Produce
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Generator

Generates

Test Input
fn foo() { ... } 
fn bar() { ... } 
fn main() { ... }

Executed on

well-typed
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Input 
Generator

Generates

Test Input
fn foo() { ... } 
fn bar() { ... } 
fn main() { ... }

Executed on

well-typed

Nothing to compare to!
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Solution

• Generate tests which behave predictably 
ahead of time, and check that the 
underlying system agrees with the 
predication

• In other words, generate tests which we 
know to be well-typed or ill-typed, and 
make sure Rust agrees

• Requires understanding Rust’s type system
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Rust’s Type System

• Rust has typeclasses, parametric 
polymorphism, generics, and affine types 
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables
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• Rust has typeclasses, parametric 
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Rust’s Type System

• Rust has typeclasses, parametric 
polymorphism, generics, and affine types 
for guaranteeing memory safety statically

• Handling affine types properly requires:

• Symbolic arithmetic constraints

• Constraints on type variables

Altogether, must embed a specialized constraint solver for 
handing these features in CLP itself
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Well-Typed for Testing

• For testing purposes, well-typed programs 
are not particularly interesting

• If compiler rejects a well-typed 
program, the programmer gets annoyed

• Types as analysis: rejection of a well-
typed program is a precision issue
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Ill-Typed for Testing

• More interesting for testing purposes: ill-
typed programs

• If a compiler accepts an ill-typed 
program, we get a silent loss of 
guarantees

• For Rust, this means programs are not 
necessarily memory-safe, defeating the 
entire purpose of the language

• Types as analysis: accepting an ill-typed 
program is a soundness issue
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Generating Ill-Typed 
Programs

• Naive approach: generate syntactically valid 
programs and discard those that happen to be 
well-typed

• Relatively efficient (most will be ill-typed)

• Most programs are obviously ill-typed 
(multiple type errors; a typechecker need 
only spot one, so this masks bugs)
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Generating Ill-Typed 
Programs

• Better approach: generate programs which 
are almost well-typed

• Intuitively, negate a single premise in a 
typing rule, leading to programs which are 
ill-typed by construction, but only with 
respect to the single negated premise

• Results in highly targeted tests

• This idea is novel, and this was the first 
attempt to generate anything intentionally 
ill-typed 39



Rust Testing Results

• Able to generate ~2,300 programs per 
second

• Versus ~2 per second compared to 
preexisting techniques on a simpler 
language CLP is over 1,100x faster for a 
significantly more complex language

• Found 18 issues; developers considered 14 of 
these bugs

•  Included one specification level bug
40
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SMT Solvers

• Used for solving constraints specified in the 
SMT-LIB language, in a similar vein as CLP

• Crucially important in software verification; 
that is, proving some code does the right 
thing

• Solvers can be buggy too

• Buggy solvers can mean faulty proofs
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Testing Approach

• Lots of details

• Work is currently in submission

• Basic idea: test with well-typed SMT-LIB 
formulas which are known to be logically 
satisfiable or unsatisfiable ahead of time
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Testing Results

• 24 bugs have been found across a number 
of solvers

• Every solver tested had at least 
one correctness bug, including Z3

• Included a specification bug which 
required communication with the standards 
committee

43



Outline
• Background

• Research problem

• Applications

• Data Structure Generation

• Generating JavaScript Programs with 
Known Runtime Behaviors

• Testing Rust’s Typechecker

• Testing SMT Solvers

• Conclusion



Conclusion

• CLP is applicable to a number of test 
problems

• CLP is capable of generating very complex 
tests in a high-performance fashion

• No need to write lots of test generation 
code with CLP

44



Demo


