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Targeted Automated
Testing Using Constraint
Logic Programming

Testing

Goal is to test some piece of software in the
hopes of finding bugs before users do



Targeted Automated
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Logic Programming

Automated

No user intervention necessary once we
start running things



largeted Automated
Testing Using Constraint
Logic Programming

Targeted

Not completely random; trying to create
specific inputs which act as good tests
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Constraint Logic Programming

99% Prolog, plus some other nice features
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Automated lesting
Motivation

® Writing correct software is hard
® Writing tests is time-consuming

® CPU cycles are cheap



Background: Differential
lesting

® |dea: generate an input via some process
® Run input on different implementations

® |f implementations disagree on result, bug
has been found
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Consider the JavaScript snippet from before
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Any random input for “...” forms a possible test

B GOk RO e

(/eI 5,

...but there is no telling if this will be a good test

(In this case, at best a test of variable lookup)
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More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees



More complex example: a library that manipulates red-
black trees

Intuitively, we need at least a significant portion of tests
which consist of valid red-black trees

Hard problem!



More complex example: a library that manipulates red-
black trees
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Still too trivial!

Intuitively,



Too trivial?

® Arbitrary red-black trees aren’t bad tests,
but they aren’t good tests, either

® More interesting: valid red-black trees of
depth £ D, containing values between 0

and K, which will rebalance on the
insertion of value v



Too trivial?

® Arbitrary red-black trees aren’t bad tests,
but they aren’t good tests, either

® More interesting: valid red-black trees of
depth £ D, containing values between 0

and K, which will rebalance on the
insertion of value v

® TJests are much more specific

® Targeted tests for finding bugs in
insertion and rebalancing

® Significantly more difficult

® Unique to my work
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solutions to systems of logical constraints
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Key Insights (2)

® A variety of search strategies can be used
to explore the space of solutions to these
logical constraints



Key Insights (2)

® A variety of search strategies can be used
to explore the space of solutions to these
logical constraints

® Search strategies can be
independent of constraints

® Search strategies are useful because
there tend to be many, even infinitely
many, solutions

® E.g,depth-first search, random, etc.



Enter Constraint Logic
Programming

® Constraint Logic Programming (CLP) is
Prolog integrated with arithmetic
constraint solvers

® CLP overall is viewable as a solver of logical
constraints, with fine-grained control over
how the constraints are solved

® Therefore, we can specify test input
constraints in CLP, and use existing CLP
engines to generate corresponding inputs



Digression:Why CLP?

® Why not SMT solvers!?
®x > v ANy < Z

® Not designed for getting all solutions,
only one solution; getting all ranges
from practically to actually impossible

® Slow (testing faster than generation)

® No / minimal control over search

23




Digression:Why CLP?

® Why not a custom constraint solver?

® | ots of engineering needed to make it fast,
which is unrelated to the test generation
problem

® Very easy to accidentally reimplement CLP
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® Why not a custom constraint solver?

® | ots of engineering needed to make it fast,
which is unrelated to the test generation
problem

® Very easy to accidentally reimplement CLP
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Min £ E < Max
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CLP Example: Binary Trees

® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,

Min < E

< Max

Clause head - comparable to function signature

1

1nBounds (E

]

Min, Max)| :-

Min #=<

= [~

4

E #=< Max.
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® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value
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CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) |:-
Min #=< E,

E #=< Max.

[~

Reverse implication

(<)




CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min #=< Ej

E #=< Max.

[~

Conjunction

(A)




CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min |[#=<| E,

E [#=<| Max.

[~

Arithmetic < over symbolic variables



CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (E, Min, Max) :-
Min #=< E,

E #=< Max|.

[~

End of clause



CLP Example: Binary Trees

® Binary trees, hot binary search trees
® (Consist of leaves and internal nodes

® Both are associated with one value

T1

® (Constraint: for each element value E,
Min < FE £ Max

1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

Logical meaning:
VMin.VElem.VMazx.

inBounds( Elem, Min, Mazx) <=
Min < Elem N Elem < Max
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® Binary trees, hot binary search trees

® Consist of leaves and internal nodes

® Both are associated with one value

L

® Constraint: for each element value E
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CLP Example: Binary Trees

i1nBounds (Elem, Main,
Min #=< Elem,

tree(leaf (Elem),

Elem #=< Max.

1nBounds (.

F 1l em,

M1in,

Max)

M1in,

Max)

Max) .



CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max)| :-
i1nBounds (Elem, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).
tree (node (Left, Elem, Right),
Min, Max) :-
i1nBounds (Elem, Min, Max),
tree(Left, Min, Max),
tree (R1ght, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right)|,
Min, Max) :-
i1nBounds (Elem, Min, Max),
tree(Left, Min, Max),
tree (R1ght, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max).




CLP Example: Binary Trees

i1nBounds (Elem, Min, Max) :-
Min #=< Elem,
Flem #=< Max.

tree(leaf (Elem), Min, Max) :-
i1nBounds (Elem, Min, Max).

tree (node (Left, Elem, Right),

Min, Max) :-

i1nBounds (Elem, Min, Max),

tree(Left, Min, Max),

tree (R1ght, Min, Max)|.
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® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
writeln (Tree),
fail.
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CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— |[tree (Tree, 0, 3),
writeln (Tree),
fail.

Generate a tree with Min = O
and Max = 3;binditto Tree



CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
writeln (Tree),
fail.

Write out the tree



CLP Example: Binary Trees

® Generating valid trees can be done like so:

?— tree (Tree, 0, 3),
wrliteln (Tree),
fail.

Trigger backtracking to occur to
generate another tree.

Intuitively, Tree is nondeterministically bound to all
possible trees.
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Data Structure (DS)
Generation

® Applied CLP to the generation of complex
data structures, along with particular
variants of interest for testing

® Variants form a strict subset of the
space, and each DS had its own variant

® Most of the data structures were novel to
our work, along with all of the variants

® |ntentionally wanted to push the limit
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ANI images (via grammars)
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Data Structures

® Sorted linked lists

® Red-black trees

® Array-based heaps (priority queues)
® ANI images (via grammars)

® Skip lists

® Splay trees

® B-trees
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® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv



Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))



Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) |A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))




Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel)| A

callsRebalance (
insert (Treel, V, Tree?))




Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of
value Vv

1sBRST (Treel) A

1sRedBlackTree (Treel) A

callsRebalance (
insert (Treel, V, Tree?))




Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which

will rebalance on the insertion of

value Vv . .
Requires reasoning about both

rebalancing and insertion;
1sBST (Treel) A jntuitively large state space
1sRedBRlackTree (Treel) A
callsRebalance (
insert (Treel, V, Tree2))




Example Variant (Same as
Previously Described)

® Valid red-black trees of depth < D,
containing values between 0 and K, which
will rebalance on the insertion of

value Vv

1sBST (Treel)

1sRedBlackTree (Treel) A

callsRebalance (

1nsert (

Treel

4

\&

Tree?

Naive approach: generate all
possible trees, and filter those
A that are related via insert



Evaluation

® TJested all aforementioned data structures

and their special variants on Korat, UDITA,
and CLP (using GNU Prolog)

® Measured how quickly all data
structures within certain bounds (small,

medium, large) could be generated, with a
30 minute timeout

® Quicker generation means more time
testing and less time generating
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Seconds
(lower is
better)

140.00000

105.00025

70.00050

35.00075

Small Bounds

B Korat

CLP Barely Registers

M CLP

0.00100
Lists

Red-Black

Heaps

Image

Skip

Splay

B-Trees
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Medium Bounds

UDITA times out on everything
Korat times out on 5/ 14 experiments
CLP is generally ~30x - |,000x faster

For B-trees, Korat and UDITA both
timeout, but CLP completes within a

single millisecond, ultimately thanks to
the capability to control search

® |nternally, they took the naive strategy

21



Large Bounds

® Korat and UDITA timeout on everything

® Depending on the data structure, CLP takes
between ~/0 seconds and just under 30
minutes

22
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Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result
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Generating Programs

® Bulk of existing literature is focused on
stochastic grammars

® Randomly walk over a language’s
grammar, producing syntactically valid
programs as a result

e € ArithExp == n € N\ e1 + e2

23
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Example Derivation

e € ArithExp ::=

n €N

0.6

| e1+ e

24



Problems with
Stochastic Grammars

® All you get is syntactic validity
® No idea what programs do
® Programs are not generally well-typed

® Difficult to test particular components
(e.g., specifically code generation)

® Only configuration is by tuning
probabilities

25



Enter CLP

® Generating syntactically valid programs is
easy...

26
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Beyond Syntax

® For example, programs which evaluate to a
particular value

® A semantic property

® |nvolves writing an evaluator for the
language in CLP

28



Expressions that
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eval (num(N), N).
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% same arithExp from before

evalsTo/ (]

ar1thExp

eval (E,

n ° —
- e

E)
)
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eval (num(N), N).
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eval (E2, N2),

N #= N1

)

+ NZ.

% same arithExp from before
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n ° —
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ar1thExp

eval (E,

E)
)
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Scaling Up

® This central idea was applied to generating
JavaScript programs with known runtime

behaviors

® Compared the generation rate to that of a
finely-tuned stochastic grammar designed
for the same thing

® Stochastic grammar probabilities were
tuned to try to generate programs with
certain behaviors
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Scaling Up

® For JavaScript, generate programs which:

® avoid dereferencing null: CLP ~3.8X faster

® stress integer optimizations: CLP ~7.8X faster

e utilize with and higher-order functions in
problematic ways: CLP ~3.1 million X faster

® utilize prototype-based inheritance: CLP
infinitely faster (stochastic grammars never

generated such a program within the five-

minute timeframe) N



Qutline

® Applications

® Testing Rust’s Typechecker



Why Rust?

® A real language with a rapidly growing user
base (over 6,600 packages available currently)

® A sophisticated type system with important
guarantees (e.g., memory safety without GC)

® No formal semantics, or even an informal
specification

® Worked closely with Rust development
team
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Why Rust’s
Typechecker?

® Well-typed Rust programs are memory safe

® |f the typechecker fails to flag an ill-typed
program, then there is a silent loss of
memory safety guarantees

® Most complex language component at the
time

32



Unique Challenge: There
is Only One Rust



Input

Generator

Generates

IS BEALCIE aL@)Ar IEEer )]

i Test Input
par () ;

Executed on

i

j Produce

53
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Generator

Generates

Test Input

Executed on

well-typed
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Input

Generator

Generates

Test Input

Executed on

| Nothing to compare to!

well-typed
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Solution

® Generate tests which behave predictably
ahead of time, and check that the
underlying system agrees with the
predication

® |nh other words, generate tests which we
know to be well-typed or ill-typed, and
make sure Rust agrees

® Requires understanding Rust’s type system
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Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables
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Rust’s Type System

Never before

® Rust has typeclasses, parametric generated
polymorphism, generics, and|affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables



Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:

® Symbolic arithmetic constraints

e Constraints on type variables Unavailable in
existing systems
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Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:

® Symbolic arithmetic constraints

® (Constraints on type variables

Never attempted
before
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Rust’s Type System

® Rust has typeclasses, parametric
polymorphism, generics, and affine types
for guaranteeing memory safety statically

® Handling affine types properly requires:
® Symbolic arithmetic constraints

® Constraints on type variables

Altogether, must embed a specialized constraint solver for
handing these features in CLP itself
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Well-Typed for Testing

® For testing purposes, well-typed programs
are not particularly interesting

® |f compiler rejects a well-typed
program, the programmer gets annoyed

® Types as analysis: rejection of a well-
typed program is a precision issue
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lll-Typed for Testing

® More interesting for testing purposes:ill-
typed programs

® |f a compiler accepts an ill-typed
program, we get a silent loss of
guarantees

® For Rust, this means programs are not
necessarily memory-safe, defeating the
entire purpose of the language

® Jypes as analysis: accepting an ill-typed
program is a soundness issue
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Generating lllI-Typed
Programs

® Naive approach: generate syntactically valid
programs and discard those that happen to be

well-typed
® Relatively efficient (most will be ill-typed)

® Most programs are obviously ill-typed
(multiple type errors; a typechecker need
only spot one, so this masks bugs)
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Generating lllI-Typed
Programs

® Better approach: generate programs which
are almost well-typed

® |ntuitively, negate a single premise in a
typing rule, leading to programs which are
ill-typed by construction, but only with
respect to the single negated premise

® Results in highly targeted tests

® This idea is novel, and this was the first
attempt to generate anything intentionally
ill-typed
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Rust lTesting Results

® Able to generate ~2,300 programs per
second

® Versus ~2 per second compared to
preexisting techniques on a simpler
language CLP is over |,100x faster for a
significantly more complex language

® Found |8 issues; developers considered |4 of
these bugs

® |[ncluded one specification level bug
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Qutline

® Applications

® Testing SMT Solvers



SMT Solvers

Used for solving constraints specified in the
SMT-LIB language, in a similar vein as CLP

Crucially important in software verification;
that is, proving some code does the right
thing

Solvers can be buggy too

Buggy solvers can mean faulty proofs
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Testing Approach

® | ots of details
® Work is currently in submission

® Basic idea: test with well-typed SMT-LIB
formulas which are known to be logically
satisfiable or unsatisfiable ahead of time
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Testing Results

® 24 bugs have been found across a number
of solvers

® Every solver tested had at least
one correctness bug, including Z3

® |ncluded a specification bug which
required communication with the standards
committee
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Qutline

Background
Research problem
Applications

® Data Structure Generation

® Generating JavaScript Programs with
Known Runtime Behaviors

® Testing Rust’s Typechecker
® Testing SMT Solvers
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Conclusion

® CLP is applicable to a number of test
problems

® CLP is capable of generating very complex
tests in a high-performance fashion

® No need to write lots of test generation
code with CLP
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Demo



