Automated Test Input Generation Strategies

Kyle Dewey
Prepared for COMP 587

1 Summary and Background

These notes detail some of the discussion we had in class on Monday, October
15, 2018. These notes introduce random and bounded-exhaustive testing.

1.1 Starting Specific: min

To help explain the concepts in these notes, let’s start with a concrete exam-
ple. Say we want to test the following min method, written in Java:

public static int min(int x, int y) {
if (x <y) A
return Xx;
} else {
return y;
}
}

As shown, the inputs to min are the two int values x and y. Different x, y
values form different test inputs, where a single test input consists of a single
value for x, along with a single value for y. Specific to min, we can visualize
different possible test inputs as individual points on a 2D coordinate plane,
like so:

= By L3 B A S =] 0o

...................

~9-8-T-6-5-4-3-2 12345 67829

This particular example shows two specific test inputs, namely -6,-5 (A)
and 6,5 (B).

If we wanted to talk about all possible test inputs for min, we would have
a point at each gridline intersection.

1.2 Generalizing Space of Test Inputs

Instead of min, let’s say we wanted to test the following Java method:

public static int multThree(int a, int b, int c¢) {
return a * b *x c;

}

Each test input to multThree would consist of an a, b, and c triplet. If
we were to map out the space as we did before, this would form a 3D space,
with one dimension per variable. In general, each input variable forms one
dimension in the space of test inputs, so a function with N inputs would
need an N-dimensional space to model every possible input.

Because these spaces quickly get very complex, we need some restrictions
for the rest of this discussion to help keep everything sane. Let’s assume that
the space of all test inputs is representable by a circle, shown below:

Space of All Possible Test Inputs

This circle encompasses all possible test inputs to whatever it is we are
testing. Even for relatively simple things (e.g., min and multThree above),
this circle will often contain trillions of test inputs. For example, the space
of test inputs to min contains MAX_INT * MAX_INT elements ((23! — 1)?) For
most realistic problems, this space is literally infinite (e.g., the user can enter
any unbounded string, the programmer may write any program when testing
a compiler, etc.).

When performing automated test input generation, we are writing code
that somehow explores this space of possible test inputs. While the details
regarding input generation tend to be specific to the problem (e.g., for min,
we are specifically generating two int values), there are certain general ways
to perform this exploration. A relevant discussion follows in the next section.

2 Exploring the Space of Test Inputs

There are all sorts of ways in which we can explore the space of possible test
inputs. This discussion focuses on three: random, bounded-exhaustive, and
Swarm Testing.

2.1 Random Exploration

In an ideal world, random exploration will randomly select from the whole
space of test inputs. This is visually represented below, where each red “X”

3

above represents a selected test input.

Random Generation
(Idealized)

2.1.1 Random Exploration Strengths

Theoretically, random exploration is great for getting a good breadth of
testing. This means that random approaches should be able to cover a wide
number of kinds of inputs, leading to better overall coverage of the system
under test (SUT). Phrased another way, many parts of the SUT will be
tested.

Random testing tends to be well-suited to situations where you're trying
to maximize the number of bugs found. This is usually in an exploratory
testing setting, where the testing itself is the main focus of your efforts. This
sort, of exploratory approach is used by Mozilla to test Firefox’s JavaScript
engine (using jsfunfuzz [9]), and by Microsoft to test the Z3 [2] constraint
solver (using the work of Brummayer et al. [1]).

2.1.2 Random Exploration Weaknesses and Caveats

Some care needs to be taken with random testing. If the testing is completely
random, where different tests are generated each time testing is requested,
this can make development efforts difficult. For example, say you are working
on a project wherein developers must pass 1,000 random tests before your

4

code will be accepted. This can be nightmarish if you received a different
set of 1,000 tests each time. Depending on your code, you might sometimes
pass all the tests, whereas other times you may fail some tests. This is bad
if random testing is a usual part of development, because it means your test
suite is a moving target. Such tests are often called flaky, and they tend to
get ignored since failure might happen sporatically.

That said, it’s usually possible to set exactly how randomness is done.
For example, if a fixed seed (https://en.wikipedia.org/wiki/Random_
seed) is selected ahead of time, this will allow you to generate randomly but
predictably. With fixed seeds, the same sequence of random numbers will
always be chosen. In the example with the 1,000 tests, this means that the
same 1,000 tests will always be generated, but that these tests will appear
random. This can get the best of both worlds.

A major caveat with randomness is that we might not be generating a
truly random sample, even though random numbers were somehow involved.
To visually illustrate this, consider the image below:

Random Generation
(Possibly in Practice)

As shown above, the sample of inputs generated is not well-distributed.
One portion of the space is tested must more extensively than others, but
another remains completely untested.

A simple example which illustrates this problem is shown here: https://
byorgey.wordpress.com/2013/04/25/random-binary-trees-with-a-size-limited-critical

5

https://en.wikipedia.org/wiki/Random_seed
https://en.wikipedia.org/wiki/Random_seed
https://byorgey.wordpress.com/2013/04/25/random-binary-trees-with-a-size-limited-critical-boltzmann-sampler-2/
https://byorgey.wordpress.com/2013/04/25/random-binary-trees-with-a-size-limited-critical-boltzmann-sampler-2/

At that link, the author is interested in randomly generating binary trees.
The algorithm chosen is pretty straightforward, and is illustrated below with
C-like psuedocode:

Tree makeTree() {
r = randomNumberBetween(0.0, 1.0);
if (r < 0.5) {
return Leaf;
} else {
Tree left = makeTree();
Tree right = makeTree();
return InternalNode(left, right);
}
+

While the above algorithm does involve randomness; it fails to generate a
broad distribution of trees. Nearly half the trees generated consist of nothing
but a single leaf (Leaf) node. This directly follows from the above algorithm:
from the logic, with 50% probability, the first call to makeTree will result in
a leaf.

Worse yet, the behavior after the first call to makeTree isn’t exactly
straightforward. Looking beyond the individual leaf nodes, the majority of
generated trees contain fewer than 10 nodes total. However, this occasionally
will generate trees with hundreds of nodes, and one generated tree (out of 100
generated) even contains over one hundred thousand nodes. The blog post
discusses a way to fix this, though the mechanism described isn’t very general.
The point is that just throwing in random numbers does not guarantee a
random distribution of test cases.

2.2 Bounded-Exhaustive Exploration

In contrast to random testing, bounded-exhaustive testing approaches will
exhaustively generate every test input within some defined bounds. This is
visually represented below:

Bounded-Exhaustive Generation
(Idealized)

The rounded red rectangle represents a bunch of test inputs which have
been covered. The edges of this rectangle represent the selected bounds.
Within these bounds, every test input is covered.

We saw an example of bounded-exhaustive testing when testing min. This
is shown below for convenience, using Java:

public static final int MIN_BOUND
public static final int MAX_BOUND

-100;
100;

Q@Test
public void testMin() {
for (int small = MIN_BOUND; small < MAX_BOUND; small++) {
for (int big = small + 1; big <= MAX_BOUND; big++) {

assertEquals(small, min(small, big));
assertEquals(small, min(big, small));
assertEquals(small, min(small, small));
assertEquals(big, min(big, big));

The above code testing min exhaustively explores values between MIN_BOUND
and MAX_BOUND. Specifically, the first parameter to min can take on every

value between MIN BOUND and MAX BOUND - 1. Even though this is a simple
example, the values that the second parameter can take are already not very

straightforward, as these depend both on the selected first parameter and
MAX_BOUND.

2.2.1 Bounded-Exhaustive Strengths

In theory, if the bounds are so large that they cover the entire space of
inputs, bounded-exhaustive testing acts as a wverification technique. That
is, bounded-exhaustive testing can prove that code is correct, by showing
that the code under test behaves correctly under every possible input. This
illustrates the power of bounded-exhaustive testing at a theoretical level.

In practice, however, it’s not usually possible to cover the entire space
of inputs, so we must settle on some subset. The idea here is that, as long
as the subset is still “big enough”, this process will still mostly work as
before. Phrased another way, this is the small scope hypothesis: most bugs
can be exposed with rather small bounds, so testing with even relatively
small bounds will still find most bugs.

2.2.2 Bounded-Exhaustive Weaknesses and Caveats

The working related to the small scope hypothesis is admittedly very murky:
how big is “big enough”, and what does “most bugs” mean? In practice, we
don’t usually know. Worse yet, given that most test input spaces are infinite,
systematically testing with even trillions of inputs is the proverbial drop in
the ocean. Visually, we might end up with the following situation:

Bounded-Exhaustive Generation
(Possibly in Practice)

As shown above, we cover only a tiny part of the input space (the red dot
near the top right). Moreover, we're covering something off-center, which
is intended to indicate that we’re missing typical behavior. We’re definitely
covering everything in part of the space, but this part is so small and obscure
that it might not matter in practice.

2.3 Swarm Testing

Swarm Testing [3] is based on the idea of focusing a random search on distinct
subsets of the input space. Different subsets of the input space will be covered
at different times. This is visually represented below:

Swarm Testing
(Idealized)

The red lines represent distinct subsets of the space, where red Xs repre-
sent individual tests. As shown, Swarm Testing in certain ways is taking the
best of both random search and bounded-exhaustive search: the bounded-
exhaustive part ensures that the whole space is covered, and the random part
ensures a good sample of individual spaces.

2.3.1 Swarm Testing Background and Demonstration of Effective-
ness

Swarm Testing was originally applied to CSmith [10], a tool which tests C
compilers. Out of the box, CSmith uses a typical random search. Swarm
Testing was implemented as something that simply cut out different C syn-
tax rules (e.g., addition, pointer dereferencing, etc.) in order to focus-in on
different subsets of C programs. This may seem counterintuitive: this in-
tentionally disables the generation of C programs with selected features,
meaning we can never possibly find bugs outside of those features. This,
however, means that CSmith is forced to more heavily test the remaining
enabled features, leading to bugs which only manifest when certain features
are heavily used. The paper found that CSmith 4+ Swarm Testing was more
effective than CSmith out of the box, showing that Swarm Testing was more
effective than plain random testing in this case.

10

2.3.2 Swarm Testing Weaknesses and Caveats

While the authors of Swarm Testing argue that it does not require signifi-
cantly more complex implementation, this really depends on your test case
generator. Moreover, we have been operating under the assumption that
Swarm Testing sees the best of random and bounded-exhaustive generation.
In theory, there is nothing stopping us from seeing the worst of random and
bounded-exhaustive generation, as shown below:

Swarm Testing
(Possibly in Practice)

As shown, the different subsets can overlap, either intentionally or other-
wise. These subsets themselves might not be evenly distributed, leading to
massive parts of the space being missed. With this in mind, care must be
taken when dividing up the search space. Similarly, random testing might
not be well-distributed within a subset, leading to parts of the space being
skipped.

2.4 Which Approach Should I Use?

All of this discussion begs the question: which approach should I use? For
better or for worse, the answer appears to be it depends. Random testing
is pervasive in areas like compiler/interpreter testing (e.g., CSmith [10] for

11

C, jsfunfuzz [9] and LangFuzz [4] for JavaScript), with some evidence that
the random approach is more effective than a bounded-exhaustive approach
(e.g., https://blog.regehr.org/archives/1246). On an intuitive level,
the need for randomness in testing compilers and interpreters makes sense; as
inputs, programs take on many dimensions, making it completely impractical
to test much of anything with a bounded-exhaustive apporach. However, I'm
unaware of a full-scale study showing that randomness is the right choice
here; much of this may be entrenchment of ideas.

Bounded-exhaustive testing intuitively seems well-suited to problems with
relatively few dimensions, where it is feasible to cover a decent amount of
each of them. Some studies argue that the small-scope hypothesis is true [§],
and more widely that bounded-exhaustive testing is superior [3] [7]. Even so,
this hardly seems like a general conclusion, and some of these studies aren’t
peer-reviewed.

Swarm Testing [3] seems to capture nice elements of random and bounded-
exhaustive testing, and has been demonstrated to be effective in other stud-
ies [6]. However, it’s still personally unclear to me if this is always the case.

Moreover, these approaches are not mutually exclusive. It’s entirely pos-
sible to use one approach on one test input dimension, and another approach
on another dimension. In practice, people often pick one apporach for all
dimensions, but there is no fundamental reason why this has to be the case.

Overall, there is not one clear winner. In practice, people usually pick
one and stick with it for all dimensions, with no experimentation. I suspect
that this is because changing between different approaches can be difficult
from an implementation standpoint, and can lead to subtle gotchas (see, for
example, https://blog.regehr.org/archives/1246). I similarly suspect
that this is because our tools to measure testing effectiveness (e.g., coverage
and mutation analysis) are pretty poor, so determining which is best isn’t
necessarily straightforward. If the results of code coverage and mutation
analysis look good, you're probably using at least an ok approach.

References

[1] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt
solvers. In Proceedings of the Tth International Workshop on Satisfiability
Modulo Theories, SMT ’09, pages 1-5, New York, NY, USA, 2009. ACM.

12

https://blog.regehr.org/archives/1246
https://blog.regehr.org/archives/1246

2]

[10]

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th international con-
ference on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg, 2008. Springer-
Verlag.

Alex Groce, Chaoqgiang Zhang, Eric Eide, Yang Chen, and John Regehr.
Swarm testing. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2012, pages 78-88, New York, NY, USA,
2012. ACM.

Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code frag-
ments. In Proceedings of the 21st USENIX conference on Security symposium,
Security’12, pages 38-38, Berkeley, CA, USA, 2012. USENIX Association.

Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov. Re-
ducing the costs of bounded-exhaustive testing. In Proceedings of the 12th
International Conference on Fundamental Approaches to Software Engineer-
ing: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, FASE 09, pages 171-185, Berlin, Heidelberg, 2009.
Springer-Verlag.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donald-
son. Many-core compiler fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI "15,

pages 65—76, New York, NY, USA, 2015. ACM.

Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and
Martin Rinard. An evaluation of exhaustive testing for data structures. Tech-
nical report, MIT Computer Science and Artificial Intelligence Laboratory
Report MIT -LCS-TR-921, 2003.

Johannes Oetsch, Michael Prischink, Jorg Piihrer, Martin Schwengerer, and
Hans Tompits. On the small-scope hypothesis for testing answer-set programs.
In Proceedings of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning, KR’12, pages 43-53. AAAI Press,
2012.

Jesse Ruderman. Introducing jsfunfuzz, 2007.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in ¢ compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, PLDI ’11,
pages 283-294, New York, NY, USA, 2011. ACM.

13

	Summary and Background
	Starting Specific: min
	Generalizing Space of Test Inputs

	Exploring the Space of Test Inputs
	Random Exploration
	Random Exploration Strengths
	Random Exploration Weaknesses and Caveats

	Bounded-Exhaustive Exploration
	Bounded-Exhaustive Strengths
	Bounded-Exhaustive Weaknesses and Caveats

	Swarm Testing
	Swarm Testing Background and Demonstration of Effectiveness
	Swarm Testing Weaknesses and Caveats

	Which Approach Should I Use?

