
Example Project Proposal for
Example Project Report

Student Name(s): Kyle Dewey
Proposed System Under Test (SUT): calculator
Link to SUT Source Code: https://github.com/CSUN-COMP587-F18/calculator
SUT Size: 427 Lines of Code

SUT Description
A calculator that takes a command-line argument, representing an arithmetic
expression. Tokenizes, parses, and evaluates the expression, and displays the result.

Attributes
• Simple: The calculator has a simple, intuitive interface
• Safe: The calculator safely handles invalid input, and will not crash.
• Correct: The calculator calculates the correct answer given a valid input.

Components
• Lexer: Breaks down expressions into a sequence of tokens
• Parser: Converts sequences of tokens into abstract syntax trees representing

arithmetic expressions
• Interpreter: Evaluates arithmetic expressions

Capabilities:
• Lexer is Safe: The lexer never crashes, and delivers informative error messages on

invalid input.
• Lexer is Correct: The lexer correctly tokenizes valid input, yielding tokens.
• Parser is Safe: The parser never crashes, and delivers informative error messages on

invalid input.
• Parser is Correct: The parser correctly parses valid input, yielding an abstract syntax

tree.
• Interpreter is Safe: The interpreter never crashes, and delivers informative error

messages on invalid input (e.g., division by zero).
• Interpreter is Correct: The interpreter gives correct answers for valid input.

Capabilities Count:
Simple Safe Correct

Lexer 0 1 1

Parser 0 1 1

Interpreter 0 1 1

https://github.com/CSUN-COMP587-F18/calculator

Basic Testing:
For each one of the listed capabilities above, I plan to write unit tests. There are
currently only unit tests for part of a common library.

Advanced V&V:
I plan to write fuzzers to automatically test each one of these components, and ensure
they never crash. Specifically:
• Lexer: a fuzzer to automatically generate different character sequences.
• Parser: a fuzzer to automatically generate different token sequences.
• Interpreter: a fuzzer to automatically generate different abstract syntax trees.

