
COMP 587: Software Verification and Validation
Fall 2018

Instructor: Kyle Dewey (kyle.dewey@csun.edu)
Course Web Page: https://kyledewey.github.io/comp587-fall18
Piazza Web Page: http://piazza.com/csun/fall2018/comp587
Office: JD 4427, Extension 4316 (not yet connected)

Course Description (From the Catalog)
An-in depth study of verification and validation strategies and techniques as they apply
to the development of quality software. Topics include test planning and management,
testing tools, technical reviews, formal methods and the economics of software testing.
The relationship of testing to other quality assurance activities as well as the integration
of verification and validation into the overall software development process are also
discussed.

Learning Objectives
Successful students will be able to:
• Formulate an actionable test plan with ACC (Attributes, Components, Capabilities)
• Test an existing software product using basic industry-standard techniques using their

test plan
• Understand and apply advanced testing techniques to existing software
• Use model checking techniques to build confidence in the correctness of software

specifications
• Use verification techniques to prove small programs correct

Course Motivation (or a Relevant Rant)
As a society, we have chosen to surround ourselves with software, and to make
software essential to daily life. Software controls everything from a car’s fuel injector to
critical infrastructure. Software makes it easy to build new things cheaply, and to rapidly
adapt to change.

However, as a society, we have counterintuitively decided that it’s generally ok for
software to fail, especially if failures are rare. It’s ok when unanticipated inputs cause
an app to crash. It’s ok if memory leaks require me to power cycle a router. It’s ok if a
race condition causes the traffic lights at an intersection to go to flashing reds. It’s ok if
a flaw in my encryption scheme allows others to read my email. It’s ok if an unchecked
array access leaks my social security number. It’s ok if a missing bounds check
destroys my life’s work. It’s ok if a lack of input sanitization wastes hundreds of millions
of dollars. It’s ok if an unexpected scenario kills people.

This sounds ridiculous, and it is ridiculous, but this is reality. Each of the above
examples is rooted in real software flaws with real impacts. None of these examples
have resulted in widespread outcry for better software. If you think any of the above are
decidedly not ok, and you want to do something about it, this class is for you.

mailto:kyle.dewey@csun.edu
https://kyledewey.github.io/comp587-fall18
https://urldefense.proofpoint.com/v2/url?u=http-3A__piazza.com_csun_fall2018_comp587-3Ftoken-3DelgKVatl44y&d=DwQCaQ&c=Oo8bPJf7k7r_cPTz1JF7vEiFxvFRfQtp-j14fFwh71U&r=xbcvXpGeM_cWDsJvyw6b1BQhFh96kcDuBa5kCMkJ7Go&m=bUvfoyHFDik90WA8Uyyu-SXxqkP6Bz99DOLldnvwcVg&s=AX6l7R_1C0K1Y2QEDcJAycOdfQFUCIFQap9th7tzIH4&e=

Course Emphasis and Structure
This course covers a broad spectrum of activities, tools, and technologies which are
intended to produce better software. Some of these activities are commonplace and
widely employed in industry, whereas others fill particular niches and may be more
academic in nature. This course is roughly split into three different pieces:
1. Basic approaches (weeks 1-4). This focuses on approaches which are seen and

used almost everywhere in industry. These approaches tend to favor ease of use
and overall simplicity over raw power. While these won’t find all the problems, they
still tend to work well for applications where minor failures are acceptable. These
should be used for almost any software project.

2. Advanced approaches (weeks 5-9). This focuses on approaches which can
automatically generate large and diverse sets of tests. These require nonstandard
background to use, and an overall different way of thinking. Most of these
techniques have been used in various industry settings, but with applications
where failures are less acceptable (e.g., web browsers, device drivers).

3. Verification-based approaches (weeks 10-15). This focuses on approaches which
can find specification-level problems, and can even prove that an implementation
is devoid of bugs. These can be unwieldy to use, and require potentially years of
experience to master. In practice, techniques like these are employed rarely, and
only for applications which are intolerant of any failures (e.g., flight control
software, space probe subsystems). Much of this area is academic in nature.

Textbook
No textbooks are required. That said, the following books may be of interest to you:
• How Google Tests Software, James Whittaker, Jason Arbon, Jeff Carollo - discusses

ACC and a number of basic industrial testing approaches
• Fuzzing: Brute Force Vulnerability Discovery, Michael Sutton, Adam Greene, Pedram

Amini - discusses some of the advanced approaches; fairly out of date, but many of
the concepts are the same

• Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Leslie Lamport - introduction to formalizing and reasoning about software
specifications with TLA+, by the creator of TLA+

• Certified Programming with Dependent Types, Adam Chlipala - an in-depth look at
dependent type theory and Coq, suitable for proving software implementations
correct

Grading
Your grade is based on the following components:

Assignments 30%

Project Proposal / ACC 5%

Project Pull Requests 12%

Project Code Reviews 12%

Not all assignments will be weighted evenly, nor will you always be given the same
amount of time for assignments. Exactly which assignments are assigned depends on
how the class progresses. In general, assignments will be submitted through Canvas
(https://canvas.csun.edu/). In the event that there is a problem with Canvas, you may
email your assignment to me (kyle.dewey@csun.edu), though this should be considered
a last resort.

Assignments and Project
Classes are backed by assignments (30% of your grade), which cover V&V in breadth.
The bulk of your grade (70%), however, is based on a project, which will allow you to
cover a subset of V&V in depth on real software. This breakdown reflects what I want
you to take away from this class: adequate high-level knowledge of a variety of
approaches, and in-depth knowledge on an area(s) of your choosing.

Details of the project follow, roughly in chronological order:
1. System under test (SUT) selection. You will choose a software project which you

want to apply V&V techniques to, hereafter referred to as a SUT. The SUT should
be sufficiently large (anything under 1,000 lines of code is almost assuredly too
small), and can be in any state of development. Your grade is based solely on the
V&V aspect, so if you select an incomplete SUT (e.g., it is still in the planning
stages), the actual SUT implementation is secondary. You are encouraged to
select software you have written in the past, but you must be ok with giving
everyone in the class access to this code. You may work in pairs, but more will be
expected of such projects.

2. Project proposal (5%). You will propose exactly what you plan to do with the SUT,
from a V&V perspective. For all projects, this must include aspects related to
details covered in the first four weeks of class, with an included ACC plan being a
hard requirement. It is also expected to include something from weeks 5-9 (e.g.,
testing with an advanced technique), and potentially something from weeks 10-15,
too. I will tell you if your proposal needs more or less; in general, it’s better to
include too much and have me tell you to scale down. You may propose to use
V&V techniques which aren’t covered in the class, and this is even encouraged.

3. Project pull requests (12% total). You are required to submit 12 pull requests
between weeks 4-15, one per week, each worth 1%. Each one of these should be
relatively small (no greater than 200 lines of code, ideally between 20-100 lines of
code). It is expected that you will need to make code changes outside of pull
requests. Pull requests are intended for reviews (more on that in a bit), to ensure
steady project progress is made, and to catch surprises early.

Project Implementation 30%

Project Report 6%

Project Presentation 5%

https://canvas.csun.edu
mailto:kyle.dewey@csun.edu

4. Project code reviews (12% total). You are required to perform 12 code reviews
between weeks 5-16, one per week, each worth 1%. The code being reviewed is
from previously-submitted pull requests.

5. Project implementation (30%). Your final implementation of the project. It is
expected that this will be larger than the sum of your pull requests (i.e., not all the
code you need to write can be reviewed). This grade is based on whether or not
your implementation actually implements what you proposed, with fully-conforming
implementations receiving full credit. It is important that there are no surprises
here; projects which do not conform to proposals will be penalized, irrespective of
reason. If you are worried that your project will not conform to the proposal, let me
know before this point and we can adjust the proposal without penalty. It is
somewhat expected that proposals may be too broad in scope, and oftentimes we
won’t be able to tell until we really dive into things.

6. Project report (6%). You will write background information on the techniques you
used, how you applied them, and what you’ve learned from the application.

7. Project presentation (5%). You will give an oral presentation on your project,
detailing the same sort of information in the report.

Plus/minus grading is used, according to the scale below:

Plagiarism and Academic Honesty

If your score is >=... ...you will receive...

92.5 A

89.5 A-

86.5 B+

82.5 B

79.5 B-

76.5 C+

72.5 C

69.5 C-

66.5 D+

62.5 D

59.5 D-

0 F

While collaboration is allowed on assignments, you are responsible for all of your own
work. You may not take code from online sources and submit it as your own. If you do
find code online which you wish to include in a solution, you must cite it. Any violations
can result in a failing grade for the assignment, or potentially failing the course for
egregious cases. A report will also be made to the Dean of Academic Affairs. Students
who repeatedly violate this policy across multiple courses may be suspended or even
expelled.

Attendance
In the first week of class, I will take attendance. If you miss both sessions in the first
week and have not made alternative arrangements with me, you must drop the class, as
per University policy (http://catalog.csun.edu/policies/attendance-class-attendance/).
After the first week I will not take attendance, though you are strongly encouraged to
attend.

Communication
• Piazza is strongly preferred (allows for private messages, anonymous posting, and

class-wide public posting)
• Email is a fallback in case Piazza isn’t working
• Do not use Canvas’ messaging (very easy for me to miss messages)

Late Policy - Assignments
Unless prior arrangements have been made, for each day an assignment is late, it will
be deducted by 10%. Assignments that are submitted more than 9 days late will not
receive any credit.

Late Policy - Other Components
Unless prior arrangements have been made, pull requests and code reviews must be
submitted by Sunday at 11:59 PM. Late submissions will not be accepted. Similarly,
late submissions will not be accepted for the final project implementation and report.

Class Feedback
I am open to any questions / comments / concerns / complaints you have about the
class. If there is something relevant you want covered, I can push to make this happen.
I operate off of your feedback, and no feedback tells me “everything is ok”. This is the
first time I’m teaching this course, and it is the first time the course has had this
particular structure, so I’m anticipating that it won’t all be smooth sailing.

---Class Schedule and List of Topics on Next Page---

http://catalog.csun.edu/policies/attendance-class-attendance/

Class Schedule and List of Topics (Subject to Change)
Week Monday Wednesday

1 8/27: Introduction, motivation,
project information

8/29: project information, ACC-based
test planning

2 9/3: Labor day (no class) 9/5: ACC + project, code reviews

3 9/10: Project selection deadline,
linters

9/12: Unit, integration testing.
Automated testing, testability

4 9/17: Testability, mocking 9/19: Measuring testing effectiveness:
test coverage

5 9/24: Measuring testing
effectiveness: mutation analysis

9/26: Unsound bug-finding tools (e.g.,
FindBugs)

6 10/1: Test generation: introduction
(basic concepts + loops)

10/3: Test generation: grammar-based,
grammar and AST review

7 10/8: Test generation: grammar-
based, implementation

10/10: Test generation: grammar-
based, thinking in grammars

8 10/15: Property-based testing:
introduction + relationship

10/17: More property-based testing,
concolic execution introduction

9 10/22: Concolic execution:
discussion

10/24: Concolic execution: in practice

10 10/29: Model checking: LTL 10/31: Model checking: LTL

11 11/5: Model checking: SPIN/TLA+ 11/7: Model checking: SPIN/TLA+

12 11/12: Veteran’s day (no class) 11/14: Model checking spillover;
verification introduction

13 11/19: Verification: Dafny 11/21: Verification: Dafny

14 11/26: Verification: Dafny
overspill, intro to dependent types

11/28: Verification: dependent types
and Coq

15 12/3: Verification: Coq 12/5: Verification: Coq

16 12/10: Project presentations 12/12: Semester over (no class)

